نتایج جستجو برای: modi ed kdv equation

تعداد نتایج: 289484  

2007
LUCA GEMIGNANI

VANDERMONDE-LIKE MATRICES LUCA GEMIGNANI Abstract. This paper is concerned with the solution of linear systems with coe cient matrices which are Vandermonde-like matrices modi ed by adding low-rank corrections. Hereafter we refer to these matrices as to modi ed Vandermonde-like matrices. The solution of modi ed Vandermondelike linear systems arises in the approximation theory both when we use R...

Journal: :Physical review letters 2001
H R Dullin G A Gottwald D D Holm

We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still pr...

2005
Simonetta Abenda Tamara Grava

We derive the modulation equations or Whitham equations for the Camassa– Holm (CH) equation. We show that the modulation equations are hyperbolic and admit bi-Hamiltonian structure. Furthermore they are connected by a reciprocal transformation to the modulation equations of the first negative flow of the Korteweg de Vries (KdV) equation. The reciprocal transformation is generated by the Casimir...

2004
LOKENATH DEBNATH

The modulational stability of both the Korteweg-de Vries (KdV) and the Boussinesq wavetralns is investigated using Whltham’s variational method. It is shown that both KdV and Boussinesq wavetrains are modulationally stable. This result seems to confirm why it is possible to transform the KdV equation into a nonlinear Schr’dinger equation with a repulsive potential. A brief discussion of Whltham...

Journal: :SIAM J. Applied Dynamical Systems 2002
C. Eugene Wayne J. Douglas Wright

In order to investigate corrections to the common KdV approximation to long waves, we derive modulation equations for the evolution of long wavelength initial data for a Boussinesq equation. The equations governing the corrections to the KdV approximation are explicitly solvable and we prove estimates showing that they do indeed give a significantly better approximation than the KdV equation al...

1999
José M. Claver Vicente Hernández Enrique S. Quintana-Ortí

In this paper we describe new parallel cyclic wavefront algo rithms for solving the semide nite discrete time Lyapunov equation for the Cholesky factor using Hammarling s method by the message passing para digm These algorithms are based on previous cyclic and modi ed cyclic algorithms designed for the parallel solution of triangular linear systems The experimental results obtained on an SGI Po...

2004
DOUGLAS WRIGHT

In order to investigate corrections to the common KdV approximation for surface water waves in a canal, we derive modulation equations for the evolution of long wavelength initial data. We work in Lagrangian coordinates. The equations which govern corrections to the KdV approximation consist of linearized and inhomogeneous KdV equations plus an inhomogeneous wave equation. These equations are e...

2017
Ying SHI Jonathan NIMMO Junxiao ZHAO

The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.

Journal: :SIAM J. Math. Analysis 2005
J. Douglas Wright

In order to investigate corrections to the common KdV approximation for surface water waves in a canal, we derive modulation equations for the evolution of long wavelength initial data. We work in Lagrangian coordinates. The equations which govern corrections to the KdV approximation consist of linearized and inhomogeneous KdV equations plus an inhomogeneous wave equation. These equations are e...

Journal: :SIAM J. Scientific Computing 1997
Roswitha März Caren Tischendorf

In electric circuit simulation the charge oriented modi ed nodal analysis may lead to highly nonlinear DAEs with low smoothness properties. They may have index 2 but they do not belong to the class of Hessenberg form systems that are well understood. In the present paper, on the background of a detailed analysis of the resulting structure, it is shown that charge oriented modi ed nodal analysis...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید