نتایج جستجو برای: mixed projection bodies
تعداد نتایج: 365431 فیلتر نتایج به سال:
New affine invariant functionals for convex polytopes are introduced. Some sharp affine isoperimetric inequalities are established for the new functionals. These new inequalities lead to fairly strong volume estimates for projection bodies. Two of the new affine isoperimetric inequalities are extensions of Ball’s reverse isoperimetric inequalities. If K is a convex body (i.e., a compact, convex...
Affine isoperimetric inequalities compare functionals, associated with convex (or more general) bodies, whose ratios are invariant under GL(n)-transformations of the bodies. These isoperimetric inequalities are more powerful than their better-known relatives of a Euclidean flavor. To be a bit more specific, this article deals with inequalities for centroid and projection bodies. Centroid bodies...
The Brunn-Minkowski inequality theory plays an important role in a number of mathematical disciplines such as measure theory, crystallography, optimal control theory, functional analysis, and geometric convexity. It has many useful applications in combinatorics, stochastic geometry, and mathematical economics. In recent years, several authors including Ball [1, 2, 3], Bourgain and Lindenstrauss...
This paper discusses theoretical foundations of quantitative image-based measurements for extracting and reconstructing geometric, kinematic and dynamic properties of observed objects. New results are obtained by using a combination of methods in perspective geometry, differential geometry, radiometry, kinematics and dynamics. Specific topics include perspective projection transformation, persp...
The setting for this paper is n-dimensional Euclidean space Rn. Let n denote the set of convex bodies (compact, convex subsets with nonempty interiors) and n o denote the subset of n that consists of convex bodies with the origin in their interiors. Denote by voli(K | ξ) the i-dimensional volume of the orthogonal projection of K onto an idimensional subspace ξ ⊂Rn. Affine quermassintegrals are ...
We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید