نتایج جستجو برای: mel frequency cepstral coefficient mfcc
تعداد نتایج: 644930 فیلتر نتایج به سال:
Abstract Aiming at the issue that recognition accuracy of traditional acoustic signal features is low for helicopter signals with wind noise in near field, a method extracting mixed MFCC+GFCC based on wavelet decomposition proposed. Firstly, three-layer and reconstruction are applied to signals; then, Mel-Frequency Cepstral Coefficients (MFCC) Gammatone-Frequency Cepstrum Coefficient (GFCC) res...
Automatic Speech Recognition (ASR) involves mainly two steps; feature extraction and classification (pattern recognition). Mel Frequency Cepstral Coefficient (MFCC) is used as one of the prominent feature extraction techniques in ASR. Usually, the set of all 12 MFCC coefficients is used as the feature vector in the classification step. But the question is whether the same or improved classifica...
Human recognizes speech emotions by extracting features from the speech signals received through the cochlea and later passed the information for processing. In this paper we propose the use of Mel-Frequency Cepstral Coefficient (MFCC) to extract the speech emotion information to provide both the frequency and time domain information for analysis. Since features extracted using the MFCC simulat...
This work proposes a method of predicting pitch and voicing from mel-frequency cepstral coefficient (MFCC) vectors. Two maximum a posteriori (MAP) methods are considered. The first models the joint distribution of the MFCC vector and pitch using a Gaussian mixture model (GMM) while the second method also models the temporal correlation of the pitch contour using a combined hidden Markov model (...
The mel frequency cepstral coefficient (MFCC) is one of the most important features required among various kinds of speech applications. In this paper, the first chip for speech features extraction based on MFCC algorithm is proposed. The chip is implemented as an intellectual property, which is suitable to be adopted in a speech recognition system on a chip. The computational complexity and me...
Automatic Speaker Recognition (ASR) is an economic tool for voice biometrics because of availability of low cost and powerful processors. For an ASR system to be successful in practical environments, it must have high mimic resistance, i.e., the system should not be defeated by determined mimics which may be either identical twins or professional mimics. In this paper, we demonstrate the effect...
This paper proposes fusion and addition techniques of vocal tract features such as Mel Frequency Cepstral Coefficients (MFCC) and Dynamic Mel Frequency Cepstral Coefficients (DMFCC) in speaker identification. Feature extraction plays an important role as a front end processing block in Speaker Identification (SI) process. Mel frequency features are used to extract the spectral characteristics o...
The Mel-frequency cepstral coefficients (MFCC) are commonly used in speech recognition systems. But, they are high sensitive to presence of external noise. In this paper, we propose a noise compensation method for Mel filter bank energies and so MFCC features. This compensation method is performed in two stages: Mel sub-band filtering and then compression of Mel-sub-band energies. In the compre...
The mel-scaled frequency cepstral coefficients (MFCCs) derived from Fourier transform and filter bank analysis are perhaps the most widely used front-ends in state-of-the-art speech recognition systems. One of the major issues with the MFCCs is that they are very sensitive to additive noise. To improve the robustness of speech front-ends with respect to noise, we introduce, in this paper, a new...
This paper is concerned with the development of Back-propagation Neural Network for Bangla Speech Recognition. In this paper, ten bangla digits were recorded from ten speakers and have been recognized. The features of these speech digits were extracted by the method of Mel Frequency Cepstral Coefficient (MFCC) analysis. The mfcc features of five speakers were used to train the network with Back...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید