نتایج جستجو برای: lpim meshless method

تعداد نتایج: 1630367  

Journal: :international journal of civil engineering 0
mohammad naisipour mohammad hadi afshar behrooz hassani ali rahmani firoozjaee

a meshless approach, collocation discrete least square (cdls) method, is extended in this paper, for solvingelasticity problems. in the present cdls method, the problem domain is discretized by distributed field nodes. the fieldnodes are used to construct the trial functions. the moving least-squares interpolant is employed to construct the trialfunctions. some collocation points that are indep...

Journal: :Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention 2007
Ashley Horton Adam Wittek Karol Miller

We develop a meshless method for simulating soft organ deformation. The method is motivated by simple, automatic model creation for real-time simulation. Our method is meshless in the sense that deformation is calculated at nodes that are not part of an element mesh. Node placement is almost arbitrary. Fully geometrically nonlinear total Lagrangian formulation is used. Geometric integration is ...

2008
Y. T. Gu C. Yan

The large deformation analysis is one of major challenges in numerical modelling and simulation of metal forming. Although the finite element method (FEM) is a well-established method for modeling nonlinear problems, it often encounters difficulties for large deformation analyses due to the mesh distortion issues. Because no mesh is used, the meshless methods show very good potential for the la...

2005
Y. Liu X. Zhang M.-W. Lu Y. LIU

The meshles.i method based on the least-squares approach, the rneshle.is weighted leastsquares (MWLS) method, is extended to soive conduction heat transfer problems. The MWLS formulation is first established for steady-state problems and then extended to unsteady-state problems with time-stepping schemes. Theoretiiai analy.us antl numerical examples indicate that larger time steps can be used i...

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

2008
Shu Li S. N. Atluri

The Meshless Local Petrov-Galerkin (MLPG) “mixed collocation” method is applied to the problem of topology-optimization of elastic structures. In this paper, the topic of compliance minimization of elastic structures is pursued, and nodal design variables which represent nodal volume fractions at discretized nodes are adopted. A so-called nodal sensitivity filter is employed, to prevent the phe...

2008
Y. Duan S. J. Lai T. Z. Huang

This paper presents an efficient meshless approach for solving electrostatic problems. This novel approach is based on combination of radial basis functions-based meshless unsymmetric collocation method with projection domain decomposition method. Under this new method, we just need to solve a Steklov-Poincaré interface equation and the original problem is solved by computing a series of indepe...

2003
N. von ELLENRIEDER C. H. MURAVCHIK

We describe a numerical method to solve the quasistatic Maxwell equations to obtain the electric potential distribution generated by a point source of current density inside a body of arbitrary shape and constant conductivity. The method needs only a set of nodes on the surface and inside the body, but it does not need a mesh connecting the nodes. The proposed meshless method is compared agains...

2007
K. H. Leem S. Oliveira D. E. Stewart

The meshless method plays an important role in solving problems in computational mechanics where conventional computational methods are not well suited. In this paper, we examine the property of the kernel matrix and investigate the convergence and timing performance of some well-known Krylov subspace methods on solving linear systems from meshless discretizations.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید