For x real, let {x} be the fractional part of x (i.e. {x} = x − bxc). In this paper we prove the k = 5 case of the following conjecture (the lonely runner conjecture): for any k positive reals v1, . . . , vk there exists a real number t such that 1/(k + 1) ≤ {vit} ≤ k/(k + 1) for i = 1, . . . , k.