نتایج جستجو برای: lipschitz algebra
تعداد نتایج: 77594 فیلتر نتایج به سال:
In this note we introduce strongly Lipschitz p-integral operators, strongly Lipschitz p-nuclear operators and Lipschitz p-nuclear operators. It is shown that for a linear operator, the Lipschitz p-nuclear norm is the same as its usual p-nuclear norm under certain conditions. We also prove that the Lipschitz 2-dominated operators and the strongly Lipschitz 2-integral operators are the same with ...
In this work we prove Malliavin differentiability for the solution to an SDE with locally Lipschitz and semi-monotone drift. To prove this formula, we construct a sequence of SDEs with globally Lipschitz drifts and show that the $p$-moments of their Malliavin derivatives are uniformly bounded.
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
In contrast to the usual Lipschitz seminorms associated to ordinary metrics on compact spaces, we show by examples that Lipschitz seminorms on possibly non-commutative compact spaces are usually not determined by the restriction of the metric they define on the state space, to the extreme points of the state space. We characterize the Lipschitz norms which are determined by their metric on the ...
A Lipschitz map f between the metric spaces X and Y is called a Lipschitz quotient map if there is a C > 0 (the smallest such C, the co-Lipschitz constant, is denoted coLip(f), while Lip(f) denotes the Lipschitz constant of f) so that for every x ∈ X and r > 0, fBX(x, r) ⊃ BY (f(x), r/C). Thus Lipschitz quotient maps are surjective maps which by definition have the property ensured by the open ...
0
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید