نتایج جستجو برای: linde f k
تعداد نتایج: 638764 فیلتر نتایج به سال:
For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$, we define a function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least $k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$. The minimum weight of a Roman $k$-tuple dominatin...
1. Laertes is about to stab Hamlet. Claudius, watching from the wings, desperately wants Laertes to stab Hamlet and has implanted a device in Laertes’ brain that, if activated, will force him to stab Hamlet. Claudius intends to activate the device if it appears that Laertes will change his mind at the last moment. Laertes, however, stabs Hamlet of his own accord and Claudius’s device is never a...
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
let (x, d) be a compact metric space and f : x → x be a continuous map. consider the metric space (k(x),h) of all non empty compact subsets of x endowed with the hausdorff metric induced by d. let ¯ f : k(x) → k(x) be defined by ¯ f(a) = {f(a) : a ∈ a} . we show that block-coppels chaos in f implies block-coppels chaos in ¯ f if f is a bijection.
!" #$% & » 2 5 . 2 &. ./ , .01 2 3"" 40 « ( ) * +" , % !" 56 7 8 97: ;< , & " = >" = :>" 40 68 " ?, @%" 5 a<" 2 ;b/ ./ c8 #7 d > % " 40 cb %" e >, > &b " ?, @%" ".8 > g 8 g7a ? h1>", 8 %" i%8 > % 3" .%" ?,e k ,", 1> n > ,e co8 p $>k 2 @! l< " c0mb .%" e "j % , 2 ?, 2. b7o " 7k s 2 o / .%" ",q r% 0 " " 2 >b> %" ( ) * %" d du 5""," " v% t b0"t " " " ...
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
in this paper, we investigate the generalizedhyers-ulam-rassias stability for the quartic, cubic and additivefunctional equation$$f(x+ky)+f(x-ky)=k^2f(x+y)+k^2f(x-y)+(k^2-1)[k^2f(y)+k^2f(-y)-2f(x)]$$ ($k in mathbb{z}-{0,pm1}$) in $p-$banach spaces.
در این پایان نامه به بررسی پایداری یرز- اولام توسعه یافته ی معادله ی جمعی و مربعی زیر: f(kx+ly)+f(kx-ly)=f(kx)+f(x)+½(k-1)[(k+2)f(x)+kf(-x)]+l^2[f(y)+f(-y)], (k,l? ?-{0}) در مدول های ??- باناخ روی یک جبر باناخ می پردازیم. به علاوه ما نشان می دهیم که تحت چه شرایطی می توان یک معادله ی تقریباً جمعی و مربعی را به وسیله ی یک تابع جمعی و مربعی تقریب زد. حل کلی معادله ی تابعی aq و بررسی پایداری یرز-...
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید