We prove that if L = lim ←−Ln (n ∈ N), where each Ln is a finite dimensional semisimple Lie algebra, and A is a finite codimensional ideal of L, then L/A is also semisimple. We show also that every finite dimensional homomorphic image of the cartesian product of solvable (nilpotent) finite dimensional Lie algebras is solvable (nilpotent). Mathematics Subject Classification: 14L, 16W, 17B45