نتایج جستجو برای: least squares ls

تعداد نتایج: 404306  

A. A. Abedi, I. EmamGholipour , M. R. Mosavi, S. Azarshahi,

In present study, using Least Squares (LS) method, we determine the position smoothing in GPS single-frequency receiver by means of pseudo-range and carrier phase measurements. The application of pseudo-range or carrier phase measurements in GPS receiver positioning separately can lead to defects. By means of pseudo-range data, we have position with less precision and more distortion. By use of...

Journal: :IJWMIP 2013
Sheng Zheng Changcai Yang Emile A. Hendriks Xiaojun Wang

We propose a snowing model to iteratively smoothe the various image noises while preserving the important image structures such as edges and lines. Considering the gray image as a digital terrain model, we develop an adaptive weighted least squares support vector machine (LS-SVM) to iteratively estimate the optimal gray surface underlying the noisy image. The LS-SVM works on Gaussian noise whil...

Journal: :Neural computation 2002
Tony Van Gestel Johan A. K. Suykens Gert R. G. Lanckriet Annemie Lambrechts Bart De Moor Joos Vandewalle

The Bayesian evidence framework has been successfully applied to the design of multilayer perceptrons (MLPs) in the work of MacKay. Nevertheless, the training of MLPs suffers from drawbacks like the nonconvex optimization problem and the choice of the number of hidden units. In support vector machines (SVMs) for classification, as introduced by Vapnik, a nonlinear decision boundary is obtained ...

Journal: :CoRR 2013
Sundeep Prabhakar Chepuri Geert Leus Alle-Jan van der Veen

In this paper, we propose a novel framework called rigid body localization for joint position and orientation estimation of a rigid body. We consider a setup in which a few sensors are mounted on a rigid body. The absolute position of the sensors on the rigid body, or the absolute position of the rigid body itself is not known. However, we know how the sensors are mounted on the rigid body, i.e...

Journal: :Computers & Electrical Engineering 2004
Jin Jiang Youmin Zhang

In this paper, the classical least squares (LS) and recursive least squares (RLS) for parameter estimation have been re-examined in the light of the present day computing capabilities. It has been demonstrated that for linear time-invariant systems, the performance of blockwise least squares (BLS) is always superior to that of RLS. In the context of parameter estimation for dynamic systems, the...

2003
József VALYON Gábor HORVÁTH

Neural networks play an important role in system modelling. This is especially true if model building is mainly based on observed data. Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they automatically answer certain crucial questions involved by neural network construction. They derive an ‘optimal’ network structure and answer...

A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...

2002
D Markel A H Gray Y T Chan J M M Lavoie J B Plant

A simple model characterizing the convergence properties of an adaptive digital lattice filter using gradient algorithms has been reported [ 11. This model is extended to the least mean square (LMS) lattice joint process estimator [SI, and to the least squares (LS) lattice and “fast” Kalman algorithms [9] -[16]. The models in each case are compared with computer simulation. The single-stage LMS...

Journal: :IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 1999
Michael Elad Arie Feuer

This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary mo...

2004
Andrzej Cichocki Rolf Unbehauen

In this paper a new class of simplified low-cost analog artificial neural networks with on chip adaptive learning algorithms are proposed for solving linear systems of algebraic equations in real time. The proposed learning algorithms for linear least squares (LS), total least squares (TLS) and data least squares (DLS) problems can be considered as modifications and extensions of well known alg...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید