نتایج جستجو برای: k nn

تعداد نتایج: 385892  

Journal: :Comput. Geom. 1997
Boris Aronov Micha Sharir

We establish several combinatorial bounds on the complexity (number of vertices and edges) of the complement of the union (also known as the common exterior) of k convex polygons in the plane, with a total of n edges. We show: 1. The maximum complexity of the entire common exterior is (nn(k) + k 2). 1 2. The maximum complexity of a single cell of the common exterior is (nn(k)). 3. The complexit...

2010
Paolo Piro Richard Nock Frank Nielsen Michel Barlaud

The k-nearest neighbors (k-NN) classification rule is still an essential tool for computer vision applications, such as scene recognition. However, k-NN still features some major drawbacks, which mainly reside in the uniform voting among the nearest prototypes in the feature space. In this paper, we propose a new method that is able to learn the “relevance” of prototypes, thus classifying test ...

ژورنال: :تحقیقات منابع آب ایران 0
بهنام آبابایی کارشناس ارشد /دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، باشگاه پژوهشگران جوان و نخبگان، تهران، ایران. هادی رمضائی اعتدالی استادیار /گروه مهندسی آب، دانشگاه بین المللی امام خمینی، قزوین، ایران. شهاب عراقی نژاد استادیار /گروه آبیاری و آبادانی، دانشکدة مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران. عبدالمجید لیاقت استاد /گروه آبیاری و آبادانی، دانشکدة مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران.

برای شبیه سازی سری های زمانی، روش هیا مختلفی ارائه شده اند که از آن جمله می توان مدل های سری زمانی ar، arma و armax و روش های رگرسیون چندخطی (mlr) و رگرسیون ناپارامتری (k-nn) را برشمرد. در این تحقیق، عملکرد این روش ها در برآورد داده های مفقود و پیش بینی مقادیر آتی سری زمانی تبخیر از سطح آزاد آب مورد بررسی قرار گرفت. مدل armax با استفاده از ورودی های استاندارد شده دمای کمینه و بیشینه، متوسط دما،...

2015
Ahmed M. Aly Walid G. Aref Mourad Ouzzani

Advances in geo-sensing technology have led to an unprecedented spread of location-aware devices. In turn, this has resulted into a plethora of location-based services in which huge amounts of spatial data need to be efficiently consumed by spatial query processors. For a spatial query processor to properly choose among the various query processing strategies, the cost of the spatial operators ...

Journal: :Comput. Geom. 2000
Robin Y. Flatland Charles V. Stewart

Given an initial rectangular range or k nearest neighbor (k-nn) query (using the L1 metric), we consider the problems of incrementally extending the query by increasing the size of the range, or by increasing k, and reporting the new points incorporated by each extension. Although both problems may be solved trivially by repeatedly applying a traditional range query or L1 k-nn algorithm, such s...

2005
Francisco Moreno-Seco Luisa Micó Jose Oncina

The nearest neighbour (NN) and k-nearest neighbour (k-NN) classification rules have been widely used in Pattern Recognition due to its simplicity and good behaviour. Exhaustive nearest neighbour search may become unpractical when facing large training sets, high dimensional data or expensive dissimilarity measures (distances). During the last years a lot of fast NN search algorithms have been d...

2006
Ken Tokoro Kazuaki Yamaguchi Sumio Masuda

Nearest neighbour (NN) searches and k nearest neighbour (k-NN) searches are widely used in pattern recognition and image retrieval. An NN (k-NN) search finds the closest object (closest k objects) to a query object. Although the definition of the distance between objects depends on applications, its computation is generally complicated and time-consuming. It is therefore important to reduce the...

Journal: :Indian Journal of Science and Technology 2015

2011
Roberto Paredes Mark A. Girolami

A probabilistic k-nn (PKnn) method was introduced in [13] under the Bayesian point of view. This work showed that posterior inference over the parameter k can be performed in a relatively straightforward manner using Markov Chain Monte Carlo (MCMC) methods. This method was extended by Everson and Fieldsen [14] to deal with metric learning. In this work we propose two different dissimilarities f...

2008
Md. Rafiul Hassan M. Maruf Hossain James Bailey Kotagiri Ramamohanarao

The k-nearest neighbour (k-NN) technique, due to its interpretable nature, is a simple and very intuitively appealing method to address classification problems. However, choosing an appropriate distance function for k-NN can be challenging and an inferior choice can make the classifier highly vulnerable to noise in the data. In this paper, we propose a new method for determining a good distance...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید