نتایج جستجو برای: jacobi polynomial
تعداد نتایج: 106152 فیلتر نتایج به سال:
We investigate the relationships between the Marcinkiewicz-Zygmund-type inequalities and certain shifted average operators. Applications to the mean boundedness of a quasi-interpolatory operator in the case of trigonometric polynomials, Jacobi polynomials, and Freud polynomials are presented.
This paper considers the n-point Gauss-Jacobi approximation of nonsingular integrals of the form ∫ 1 −1 μ(t)φ(t) log(z− t) dt, with Jacobi weight μ and polynomial φ, and derives an estimate for the quadrature error that is asymptotic as n → ∞. The approach follows that previously described by Donaldson and Elliott. A numerical example illustrating the accuracy of the asymptotic estimate is pres...
In this paper, an algorithm is presented to find exact polynomial solutions of nonlinear differential-difference equations(DDEs) in terms of the Jacobi elliptic functions. The key steps of the algorithm are illustrated by the discretized mKdV lattice. A Maple package JACOBI is developed based on the algorithm to automatically compute special solutions of nonlinear DDEs. The effectiveness of the...
A reenement of a conjecture of Gasper concerning the values
We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin’s polyspherical coordinates. We...
We develop a parallel Jacobi-Davidson approach for finding a partial set of eigenpairs of large sparse polynomial eigenvalue problems with application in quantum dot simulation. A Jacobi-Davidson eigenvalue solver is implemented based on the Portable, Extensible Toolkit for Scientific Computation (PETSc). The eigensolver thus inherits PETSc’s efficient and various parallel operations, linear so...
We propose Jacobi–Davidson type methods for polynomial two-parameter eigenvalue problems (PMEP). Such problems can be linearized as singular two-parameter eigenvalue problems, whose matrices are of dimension k(k + 1)n/2, where k is the degree of the polynomial and n is the size of the matrix coefficients in the PMEP. When k2n is relatively small, the problem can be solved numerically by computi...
Even though the theory of orthogonal polynomials on the unit circle, also known as the theory of Szegő polynomials, is very extensive, it is less known than the theory of orthogonal polynomials on the real line. One reason for this may be that “beautiful” examples on the theory of Szegő polynomials are scarce. This is in contrast to the wonderful examples of Jacobi, Laguerrer and Hermite polyno...
In 1967 Durrmeyer introduced a modiication of the Bernstein polynomials as a selfadjoint polynomial operator on L 2 0; 1] which proved to be an interesting and rich object of investigation. Incorporating Jacobi weights Berens and Xu obtained a more general class of operators, sharing all the advantages of Durrmeyer's modiication, and identiied these operators as de la Vall ee{Poussin means with...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید