نتایج جستجو برای: isotropic weyl manifold
تعداد نتایج: 62444 فیلتر نتایج به سال:
An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to a...
A direct, bundle-theoretic method for defining and extending local isometries out of curvature data is developed. As a by-product, conceptual direct proofs of a classical result of Singer and a recent result of the authors are derived. A classical result of I. M. Singer [7] states that a Riemannian manifold is locally homogeneous if and only if its Riemannian curvature tensor together with its ...
We obtain a characterization of the Kerr metric among stationary, asymptotically flat, vacuum spacetimes, which extends the characterization in terms of the Simon tensor (defined only in the manifold of trajectories) to the whole spacetime. More precisely, we define a three index tensor on any spacetime with a Killing field, which vanishes identically for Kerr and which coincides in the strictl...
B. Fedosov has given a simple and very natural construction of a deformation quantization for any symplectic manifold, using a flat connection on the bundle of formal Weyl algebras associated to the tangent bundle of a symplectic manifold. The connection is obtained by affinizing, nonlinearizing, and iteratively flattening a given torsion free symplectic connection. In this paper, a classical a...
The formality theorem for Hochschild chains of the algebra of functions on a smooth manifold gives us a version of the trace density map from the zeroth Hochschild homology of a deformation quantization algebra to the zeroth Poisson homology. We propose a version of the algebraic index theorem for a Poisson manifold which is based on this trace density map. 1991 MSC: 19K56, 16E40.
We give a classification of polarized deformation quantizations on a symplectic manifold with a (complex) polarization. Also, we establish a formula which relates the characteristic class of a polarized deformation quantization to its Fedosov class and the Chern class of the polarization.
TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For manifolds, pseudosymmetric cases investigated some interesting results obtained. We show that semisymmetric is of constant sectional curvature. also obtain an $\eta$-Einstein manifold. Finally, we support our topic with example.
Starting from a real analytic surface ℳ with conformal Cartan connection A. Bor´owka constructed minitwistor space of an asymptotically hyperbolic Einstein–Weyl manifold being the boundary. In this article, starting symmetry connection, we prove that symmetries on can be extended to obtained manifold.
we study the notion of harmonicity in the sense of symplectic geometry, and investigate the geometric properties of harmonic thom forms and distributional thom currents, dual to different types of submanifolds. we show that the harmonic thom form associated to a symplectic submanifold is nowhere vanishing. we also construct symplectic smoothing operators which preserve the harmonicity of distri...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید