نتایج جستجو برای: independent component analysis ica

تعداد نتایج: 3566042  

2004
Alexander Ilin Antti Honkela

Post-nonlinear (PNL) independent component analysis (ICA) is a generalisation of ICA where the observations are assumed to have been generated from independent sources by linear mixing followed by component-wise scalar nonlinearities. Most previous PNL ICA algorithms require the post-nonlinearities to be invertible functions. In this paper, we present a variational Bayesian approach to PNL ICA ...

2012
Masaru Fujieda Takahiro Murakami Yoshihisa Ishida

Independent component analysis (ICA) in the frequency domain is used for solving the problem of blind source separation (BSS). However, this method has some problems. For example, a general ICA algorithm cannot determine the permutation of signals which is important in the frequency domain ICA. In this paper, we propose an approach to the solution for a permutation problem. The idea is to effec...

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

2013
Valeri Tsatsishvili Fengyu Cong Tuomas Puoliväli Vinoo Alluri Petri Toiviainen Asoke K. Nandi Elvira Brattico Tapani Ristaniemi

Group independent component analysis (ICA) with special assumptions is often used for analyzing functional magnetic resonance imaging (fMRI) data. Before ICA, dimension reduction is applied to separate signal and noise subspaces. For analyzing noisy fMRI data of individual participants in free-listening to naturalistic and long music, we applied individual ICA and therefore avoided the assumpti...

2005
Zoltán Szabó Barnabás Póczos András Lőrincz

Here, a separation theorem about Independent Subspace Analysis (ISA), a generalization of Independent Component Analysis (ICA) is proven. According to the theorem, ISA estimation can be executed in two steps under certain conditions. In the first step, 1-dimensional ICA estimation is executed. In the second step, optimal permutation of the ICA elements is searched for. We shall show that ellipt...

2000
Marcel Joho Heinz Mathis Russell H. Lambert

This paper addresses the blind source separation problem for the case where more sensors than source signals are available. A noisy-sensor model is assumed. The proposed algorithm comprises two stages, where the first stage consists of a principal component analysis (PCA) and the second one of an independent component analysis (ICA). The purpose of the PCA stage is to increase the input SNR of ...

2012
Hemant P. Kasturiwale

Biomedical signals can arise from one or many sources including heart, brains and endocrine systems. Multiple sources poses challenge to researchers which may have contaminated with artifacts and noise. The analysis of these signals is important both for research and for medical diagnosis and treatment. The applications of Independent Component Analysis (ICA) to biomedical signals is a rapidly ...

2007
M. Journée A. E. Teschendorff P.-A. Absil S. Tavaré R. Sepulchre

DNA microarrays provide such a huge amount of data that unsupervised methods are required to reduce the dimension of the data set and to extract meaningful biological information. This work shows that Independent Component Analysis (ICA) is a promising approach for the analysis of genome-wide transcriptomic data. The paper first presents an overview of the most popular algorithms to perform ICA...

2006
Kun Zhang Lai-Wan Chan

It is well known that principal component analysis (PCA) only considers the second-order statistics and that independent component analysis (ICA) exploits higher-order statistics of the data. In this paper, for whitened data, we give an elegant way to incorporate higherorder statistics implicitly in the form of second-order moments, and show that ICA can be performed by PCA following a simple t...

2003
Önsen TOYGAR Adnan ACAN

In this paper, the performances of appearance-based statistical methods such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA) are tested and compared for the recognition of colored face images. Three sets of experiments are conducted for relative performance evaluations. In the first set of experiments, the recognition performanc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید