نتایج جستجو برای: hjb pde

تعداد نتایج: 9019  

Journal: :SIAM J. Control and Optimization 2014
Lifeng Wei Zhen Wu Huaizhong Zhao

This paper is concerned with Sobolev weak solution of Hamilton-Jacobi-Bellman (HJB) equation. This equation is derived from the dynamic programming principle in the study of the stochastic optimal control problem. Adopting Doob-Meyer decomposition theorem as one of main tool, we prove that the optimal value function is the unique Sobolev weak solution of the corresponding HJB equation. For the ...

2011
S. Khardi

Abstract Flight path optimization is designed for minimizing aircraft noise, fuel consumption and air pollution around airports. This paper gives theoretical considerations and algorithms solving the Hamilton-JacobiBellman equation (HJB) of aircraft trajectory optimization. Comparisons with direct and indirect methods are carried out. The OCP problem is transformed into new equalities-constrain...

In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...

Journal: :SIAM J. Control and Optimization 2010
Salvatore Federico Ben Goldys Fausto Gozzi

We study a class of optimal control problems with state constraints, where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular the so-called models with time to build, see [1, 2, 26]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infi...

2009
Salvatore Federico Ben Goldys Fausto Gozzi

We study a class of optimal control problems with state constraints where the state equation is a differential equation with delays. This class includes some problems arising in economics, in particular the so-called models with time to build, see [1, 2, 25]. We embed the problem in a suitable Hilbert space H and consider the associated Hamilton-Jacobi-Bellman (HJB) equation. This kind of infin...

Journal: :SIAM J. Numerical Analysis 2012
Jan Hendrik Witte Christoph Reisinger

In this paper, we present a novel penalty approach for the numerical solution of continuously controlled HJB equations and HJB obstacle problems. Our results include estimates of the penalization error for a class of penalty terms, and we show that variations of Newton’s method can be used to obtain globally convergent iterative solvers for the penalized equations. Furthermore, we discuss under...

2017
Lifeng Wei Zhen Wu Huaizhong Zhao

This paper is concerned with Sobolev weak solution of Hamilton-Jacobi-Bellman (HJB) equation. This equation is derived from the dynamic programming principle in the study of the stochastic optimal control problem. Adopting Doob-Meyer decomposition theorem as one of main tool, we prove that the optimal value function is the unique Sobolev weak solution of the corresponding HJB equation. For the ...

2017
Lifeng Wei Zhen Wu Huaizhong Zhao

This paper is concerned with Sobolev weak solution of Hamilton-Jacobi-Bellman (HJB) equation. This equation is derived from the dynamic programming principle in the study of the stochastic optimal control problem. Adopting Doob-Meyer decomposition theorem as one of main tool, we prove that the optimal value function is the unique Sobolev weak solution of the corresponding HJB equation. For the ...

2014
Tom C. J. Dela Haije Remco Duits Chantal M. W. Tax

In this chapter erosion is generalized to the space of diffusion weighted MRI data. This is done effectively by solving a Hamilton-Jacobi-Bellman (HJB) system (erosion) on the coupled space of three dimensional positions and orientations, embedded as a quotient in the group of three dimensional rigid body motions. The solution to the HJB equations is given by a well-posed morphological convolut...

Journal: :SIAM J. Financial Math. 2013
Sergey Nadtochiy Thaleia Zariphopoulou

We provide an approximation scheme for the maximal expected utility and optimal investment policies for the portfolio choice problem in an incomplete market. Incompleteness stems from the presence of a stochastic factor which affects the dynamics of the correlated stock price. The scheme is built on the Trotter-Kato approximation and is based on an intuitively pleasing splitting of the Hamilton...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید