نتایج جستجو برای: h3n2 subtype
تعداد نتایج: 57564 فیلتر نتایج به سال:
While the early start and higher intensity of the 2012/13 influenza A virus (IAV) epidemic was not unprecedented, it was the first IAV epidemic season since the 2009 H1N1 influenza pandemic where the H3N2 subtype predominated. We directly sequenced the genomes of 154 H3N2 clinical specimens collected throughout the epidemic to better understand the evolution of H3N2 strains and to inform the H3...
During recent canine influenza surveillance in South Korea, a novel H3N1 canine influenza virus (CIV) that is a putative reassortant between pandemic H1N1 2009 and H3N2 CIVs was isolated. Genetic analysis of eight genes of the influenza virus revealed that the novel H3N1 isolate presented high similarities (99.1-99.9 %) to pandemic influenza H1N1, except for in the haemagglutinin (HA) gene. The...
Novel swine-origin influenza viruses of the H1N1 subtype were first detected in humans in April 2009. As of 12 August 2009, 180,000 cases had been reported globally. Despite the fact that they are of the same antigenic subtype as seasonal influenza viruses circulating in humans since 1977, these viruses continue to spread and have caused the first influenza pandemic since 1968. Here we show tha...
The seasonal influenza vaccine is currently the most effective preventive modality against influenza infection. Nasopharyngeal samples of vaccinated and non-vaccinated patients presenting with Influenza-like-illness (ILI) were collected from over 20 outpatient clinics located in different geographic parts of Israel and were tested for the presence of influenza viruses (influenza A and influenza...
Amino acid sequences of haemagglutinins of influenza viruses of the H3 subtype isolated from horses.
The amino acid sequence of the haemagglutinin of A/equine/Miami/63 (H3N8), the prototype influenza virus of the H3 subtype from horses, is deduced from the nucleotide sequence of virus RNA and compared with the sequences of haemagglutinins of viruses of this subtype isolated from humans [X-31 (H3N2)] and from birds [A/duck/Ukraine/63 (H3N8)] and with the sequence of the haemagglutinin of A/equi...
BACKGROUND There are few and debated data regarding possible differences in the clinical presentations of influenza A/H1N1, A/H3N2 and B viruses in children. This study evaluates the clinical presentation and socio-economic impact of laboratory-confirmed influenza A/H1N1, A/H3N2 or B infection in children attending an Emergency Room because of influenza-like illness. METHODS Among the 4,726 c...
Objective This study evaluates the difference between winter influenza and summer influenza in Okinawa. Methods From January 2007 to June 2014, weekly rapid antigen test (RAT) results performed in four acute care hospitals were collected for the surveillance of regional influenza prevalence in the Naha region of the Okinawa Islands. Results An antigenic data analysis revealed that multiple H1N1...
Seasonal epidemics caused by influenza virus are driven by antigenic changes (drift) in viral surface glycoproteins that allow evasion from preexisting humoral immunity. Antigenic drift is a feature of not only the hemagglutinin (HA), but also of neuraminidase (NA). We have evaluated the antigenic evolution of each protein in H1N1 and H3N2 viruses used in vaccine formulations during the last 15...
Canine influenza virus (CIV) is an etiologic agent of canine infectious respiratory disease (CIRD). In March of 2015, a strain of H3N2 subtype CIV, previously found only in Asia, emerged in Chicago, IL, USA. The virus triggered localized outbreaks of CIRD in Illinois, and rapidly spread to dogs in at least 30 different U.S. states. In response to this outbreak and the high probability that curr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید