نتایج جستجو برای: gwas
تعداد نتایج: 6259 فیلتر نتایج به سال:
One of the missions of the NIH BD2K (Big Data to Knowledge) initiative is to make data discoverable and promote the re-use of existing datasets. Our ultimate goal is to develop a scalable approach that can automatically scan millions of scientific publications and identify underlying data sets. Using Genome-Wide Association Studies (GWAS) as a use case, we conducted an initial study to identify...
Genome-wide association studies (GWAS) have emerged as the method of choice for identifying common variants affecting complex disease. In a GWAS, particular attention is placed, for obvious reasons, on single-nucleotide polymorphisms (SNPs) that exceed stringent genome-wide significance thresholds. However, it is expected that many SNPs with only nominal evidence of association (e.g., P < 0.05)...
Genome-wide association study (GWAS) aims to discover genetic factors underlying phenotypic traits. The large number of genetic factors poses both computational and statistical challenges. Various computational approaches have been developed for large scale GWAS. In this chapter, we will discuss several widely used computational approaches in GWAS. The following topics will be covered: (1) An i...
Genome-wide association studies (GWAS) have now successfully identified important genetic variants associated with many human traits and diseases. The high cost of genotyping arrays in large data sets remains the major barrier to wider utilization of GWAS. We have developed a novel method in which whole blood from cases and controls, respectively, is pooled prior to DNA extraction for genotypin...
BACKGROUND Radiographic progression is reported to be highly heritable in rheumatoid arthritis (RA). However, previous study using genetic loci showed an insufficient accuracy of prediction for radiographic progression. The aim of this study is to identify a biologically relevant prediction model of radiographic progression in patients with RA using a genome-wide association study (GWAS) combin...
In genome-wide association studies (GWAS), the association between each single nucleotide polymorphism (SNP) and a phenotype is assessed statistically. To further explore genetic associations in GWAS, we considered two specific forms of biologically plausible SNP-SNP interactions, 'SNP intersection' and 'SNP union,' and analyzed the Crohn's Disease (CD) GWAS data of the Wellcome Trust Case Cont...
Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there ...
As a result of technological advances, the genomic analysis of stroke has shifted from candidate gene association studies to genome-wide association studies (GWAS). Agnostic GWAS evaluate up to 90% of common genetic variation in a single experiment, creating an improved framework for identifying novel genetic leads for biochemical and cellular mechanisms underlying stroke. Given the ubiquity of...
MOTIVATION Genome-wide association studies (GWAS) have identified many loci implicated in disease susceptibility. Integration of GWAS summary statistics (P-values) and functional genomic datasets should help to elucidate mechanisms. RESULTS We extended a non-parametric SNP set enrichment method to test for enrichment of GWAS signals in functionally defined loci to a situation where only GWAS ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید