نتایج جستجو برای: gmm method

تعداد نتایج: 1633525  

2015
Gonzalo Rubio Martin Lozano Martín Lozano

We follow the correct Jagannathan and Wang (2002) framework for comparing the estimates and specification tests of the classical Beta and Stochastic Discount Factor/Generalized Method of Moments (SDF/GMM) methods. We extend previous studies by considering not only single but also multifactor models, and by taking into account some of the prescriptions for improving empirical tests suggested by ...

2011
Chenhao Zhang Xiaojun Wu Linlin Wang Gang Wang Roger Jang Thomas Fang Zheng

The length of the test speech greatly influences the performance of GMM-UBM based text-independent speaker recognition system, for example when the length of valid speech is as short as 1~5 seconds, the performance decreases significantly because the GMM-UBM based speaker recognition method is a statistical one, of which sufficient data is the foundation. Considering that the use of text inform...

2001
Guorong Xuan Wei Zhang Peiqi Chai

The HMM (Hidden Markov Model) is a probabilistic model of the joint probability of a collection of random variables with both observations and states. The GMM (Gaussian Mixture Model) is a finite mixture probability distribution model. Although the two models have a close relationship, they are always discussed independently and separately. The EM (Expectation-Maximum) algorithm is a general me...

2009
Donglai Zhu Bin Ma Haizhou Li

Discriminative training (DT) methods of acoustic models, such as SVM and MMI-training GMM, have been proved effective in spoken language recognition. In this paper we propose a DT method for GMM using the large margin (LM) estimation. Unlike traditional MMI or MCE methods, the LM estimation attempts to enhance the generalization ability of GMM to deal with new data that exhibits mismatch with t...

Journal: :Journal of Multimedia 2014
Jun He Ji-Chen Yang Jianbin Xiong Guoxi Sun Ming Xiao

To overcome the defects of common used algorithms based on model for abnormal speech recognition, which existed insufficient training data and difficult to fit each type of abnormal characters, an abnormal speech detection method based on GMM-UBM was proposed in this paper. For compensating the defects of methods based on model which difficult to deal with the diversification speech. Firstly, m...

2010
Wooil Kim Jun-Won Suh John H. L. Hansen

This paper proposes an effective feature compensation scheme to address a real-life situation where clean speech database is not available for Gaussian Mixture Model (GMM) training for a model-based feature compensation method. The proposed scheme employs a Support Vector Machine (SVM)based model selection method to effectively generate the GMM for our feature compensation method directly from ...

Journal: :CoRR 2015
Philip Lam Li-Li Wang Henry Y. T. Ngan Nelson Hong Ching Yung Anthony Gar-On Yeh

It is meaningful to detect outliers in traffic data for traffic management. However, this is a massive task for people from large-scale database to distinguish outliers. In this paper, we present two methods: Kernel Smoothing Näıve Bayes (NB) method and Gaussian Mixture Model (GMM) method to automatically detect any hardware errors as well as abnormal traffic events in traffic data collected at...

2013
Hsin-Te Hwang Yu Tsao Hsin-Min Wang Yih-Ru Wang Sin-Horng Chen

In this paper, we propose a discriminative training (DT) method to alleviate the muffled sound effect caused by over smoothing in the Gaussian mixture model (GMM)-based voice conversion (VC). For the conventional GMM-based VC, we often observed a large degree of ambiguities among acoustic classes (generative classes), determined by the source feature vectors for generating the converted feature...

2013
Masakiyo Fujimoto Tomohiro Nakatani

Although typical model-based noise suppression including the vector Taylor series-based approach employs a single Gaussian distribution for the noise model, it is insufficient for nonstationary noises which have a complex structured distribution. As a solution to this problem, we have already proposed a method for estimating a Gaussian mixture model (GMM)-based noise model by using a minimum me...

2014
Peng Song Yun Jin Wenming Zheng Li Zhao

In this paper, we propose a novel voice conversion method called speaker model alignment (SMA), which does not require parallel training speech. Firstly, the source and target speaker models, described by Gaussian mixture model (GMM), are trained, respectively. Then, the transformation function of spectral features is learned by aligning the components of source and target speaker models iterat...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید