نتایج جستجو برای: generalized n set convex function

تعداد نتایج: 2717715  

Journal: :sahand communications in mathematical analysis 0
mohammad ali hadian nadoshan department of mathematics, vali-e-asr university of rafsanjan, zip code: 7718897111, rafsanjan, iran. hamid reza afshin department of mathematics, vali-e-asr university of rafsanjan, zip code: 7718897111, rafsanjan, iran.

in this paper we study the concept of latin-majorizati-on. geometrically this concept is different from other kinds of majorization in some aspects. since the set of all $x$s latin-majorized by a fixed $y$ is not convex, but, consists of :union: of finitely many convex sets. next, we hint to linear preservers of latin-majorization on $ mathbb{r}^{n}$ and ${m_{n,m}}$.

2002
A. Khovanskii D. Novikov

Convex-concave sets and Arnold hypothesis. The notion of convexity is usually defined for subsets of affine spaces, but it can be generalized for subsets of projective spaces. Namely, a subset of a projective space RP is called convex if it doesn’t intersect some hyperplane L ⊂ RP and is convex in the affine space RP \L. In the very definition of the convex subset of a projective space appears ...

2013
Marcus Wagner

with n, m > 2, Ω ⊂ R, m < p < ∞ and a compact set K ⊂ R with nonempty interior. In the case of a convex integrand f(s, ξ, · ) and a convex restriction set K, the global minimizers of (1.1) − (1.3) satisfy optimality conditions in the form of Pontryagin’s principle 01) even though the usual regularity condition for the equality operator (1.2) fails. 02) The question arises whether the Pontryagin...

Journal: :IEICE Transactions 2005
Tetsuya Fujie Akihisa Tamura

In this paper, we generalize the theory of a convex set relaxation for the maximum weight stable set problem due to Grotschel, Lov asz and Schrijver to the generalized stable set problem. We de ne a convex set which serves as a relaxation problem, and show that optimizing a linear function over the set can be done in polynomial time. This implies that the generalized stable set problem for per...

In this paper, we establish a proof for  a  necessary condition for  multiple objective fractional programming. In order to derive the set of necessary conditions, we employ an equivalent parametric problem. Also, we  present the related semi parametric model.

Journal: :Math. Meth. of OR 2010
Hoang Xuan Phu Vo Minh Pho

The problem of minimizing f̃ = f +p over some convex subset of a Euclidean space is investigated, where f(x) = x Ax + b x is a strictly convex quadratic function and |p| is only assumed to be bounded by some positive number s. It is shown that the function f̃ is strictly outer γ-convex for any γ > γ∗, where γ∗ is determined by s and the smallest eigenvalue of A. As consequence, a γ∗-local minimal...

2009
FENG QI

In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.

2014
Feng Yin Guang-Xin Huang

and Applied Analysis 3 to a class of complex matrix equations with conjugate and transpose of the unknowns. Jonsson and Kågström 24, 25 proposed recursive block algorithms for solving the coupled Sylvester matrix equations and the generalized Sylvester and Lyapunov Matrix equations. Very recently, Huang et al. 26 presented a finite iterative algorithms for the one-sided and generalized coupled ...

A graceful labeling of a graph $G=(V,E)$ with $m$ edges is aninjection $f: V(G) rightarrow {0,1,ldots,m}$ such that the resulting edge labelsobtained by $|f(u)-f(v)|$ on every edge $uv$ are pairwise distinct. For natural numbers $n$ and $k$, where $n > 2k$, a generalized Petersengraph $P(n, k)$ is the graph whose vertex set is ${u_1, u_2, cdots, u_n} cup {v_1, v_2, cdots, v_n}$ and its edge set...

1993
Christer O. KISELMAN C. O. Kiselman

The theme of these lectures is local and global properties of plurisubharmonic functions. First differential inequalities defining convex, subharmonic and plurisubharmonic functions are discussed. It is proved that the marginal function of a plurisubharmonic function is plurisubharmonic under certain hypotheses. We study the singularities of plurisubharmonic functions using methods from convexi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید