Let $R$ be a commutative Noetherian ring with non-zero identity, $\mathfrak{a}$ an ideal of $R$, $M$ finitely generated $R$--module, and $X$ arbitrary $R$--module. In this paper, for non-negative integers $s, t$ $R$--module $N$, we study the membership $\operatorname{Ext}_{R}^{s}(N, \operatorname{H}^{t}_{\mathfrak{a}}(M, X))$ in Serre subcategories category $R$--modules present some upper bound...