نتایج جستجو برای: galerkin finite element
تعداد نتایج: 401088 فیلتر نتایج به سال:
A posteriori error estimation for conforming, non-conforming and discontinuous finite element schemes are discussed within a single framework. By dealing with three ostensibly different schemes under the same umbrella, the same common underlying principles at work in each case are highlighted leading to a clearer understanding of the issues involved. The ideas are presented in the context of pi...
Consider the problem− 2∆u+u = f with homogeneous Neumann boundary condition in a bounded smooth domain in RN . The whole range 0 < ≤ 1 is treated. The Galerkin finite element method is used on a globally quasi-uniform mesh of size h; the mesh is fixed and independent of . A precise analysis of how the error at each point depends on h and is presented. As an application, first order error estima...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Tiivistelmä (in Finnish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discont...
We develop new stabilized mixed finite element methods for Darcy flow. Stability and an a priori error estimate in the ‘‘stability norm’’ are established. A wide variety of convergent finite elements present themselves, unlike the classical Galerkin formulation which requires highly specialized elements. An interesting feature of the formulation is that there are no mesh-dependent parameters. N...
ה ןויעה םוי 35 חשיא לש " מ 0 1 רבוטקואב 013 2 , ןב תטיסרבינוא ןוירוג , ראב עבש , לארשי
In this paper, authors shall introduce a finite element method by using a weakly defined gradient operator over discontinuous functions with heterogeneous properties. The use of weak gradients and their approximations results in a new concept called discrete weak gradients which is expected to play important roles in numerical methods for partial differential equations. This article intends to ...
In this paper, we study the semi-discrete Galerkin finite element method for parabolic equations with Lipschitz continuous coefficients. We prove the maximumnorm stability of the semigroup generated by the corresponding elliptic finite element operator, and prove the space-time stability of the parabolic projection onto the finite element space in L∞(QT ) and L p((0, T ); Lq ( )), 1 < p, q < ∞....
Meshless Finite Element Methods, namely elementfree Galerkin and point-interpolation method were implemented and tested concerning their applicability to typical engineering problems like electrical fields and structural mechanics. A class-structure was developed which allows a consistent implementation of these methods together with classical FEM in a common framework. Strengths and weaknesses...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید