نتایج جستجو برای: fuzzy owa

تعداد نتایج: 90322  

Journal: :Lecture Notes in Computer Science 2021

Social media are an essential source of meaningful data that can be used in different tasks such as sentiment analysis and emotion recognition. Mostly, these solved with deep learning methods. Due to the fuzzy nature textual data, we consider using classification methods based on rough sets.Specifically, develop approach for SemEval-2018 detection task, nearest neighbour (FRNN) classifier enhan...

Journal: :Eng. Appl. of AI 2006
Dongrui Wu Woei Wan Tan

Type-2 fuzzy sets, which are characterized by membership functions (MFs) that are themselves fuzzy, have been attracting interest. This paper focuses on advancing the understanding of interval type-2 fuzzy logic controllers (FLCs). First, a type-2 FLC is evolved using Genetic Algorithms (GAs). The type-2 FLC is then compared with another three GA evolved type-1 FLCs that have different design p...

Journal: :iranian journal of fuzzy systems 2009
ferenc szidarovszky mahdi zarghami

this paper will introduce a new method to obtain the order weightsof the ordered weighted averaging (owa) operator. we will first show therelation between fuzzy quantifiers and neat owa operators and then offer anew combination of them. fuzzy quantifiers are applied for soft computingin modeling the optimism degree of the decision maker. in using neat operators,the ordering of the inputs is not...

2006
Philippe Vautrot Laurent Hussenet Michel Herbin

This paper addresses the problem of robust filtering in color images. We propose to improve the bilateral filter by using Ordered Weighted Averaging (OWA) filters. Bilateral filter decreases amount of noise preserving edges when filtering. But the results could be strongly affected by the presence of outliers. In this paper, we define the filtering in the framework of fuzzy logic. If the filter...

2010
ION IANCU

The task of a standard fuzzy logic controller is to find a crisp control action from the fuzzy rulebase and from a set of crisp inputs. In this paper we propose an extension of this type of reasoning using Mobile Agents which works with crisp data, intervals and/or linguistic terms as inputs and with various matching methods. For any matching one obtain a crisp value as output using Slave Agent...

2006
Jesús Chamorro-Martínez Elena Galán-Perales Daniel Sánchez José M. Soto-Hidalgo

In this paper we model the concept of ”coarseness”, typically used in texture image descriptions, by means of fuzzy sets. Specifically, we relate representative measures of this kind of texture with its presence degree. To obtain these ”presence degrees”, we collect assessments from polls filled by human subjects, performing an aggregation of these assessments by means of OWA operators. Using t...

2012
Shouzhen Zeng Weihua Su Anbo Le

We develop the fuzzy generalized ordered weighted averaging distance (FGOWAD) operator. It is a new aggregation operator that uses the main characteristics of the generalized OWA (GOWA), the ordered weighted averaging distance (OWAD) and uncertain information represented as fuzzy numbers. This operator includes a wide range of distance measures and aggregation operators such as the fuzzy maximu...

ژورنال: :علوم و فنون نقشه برداری 0
علی طالع جنکانلو a.tale jenekanlou گروه سیستم های اطلاعات مکانی- دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین محمد کریمی m. karimi گروه سیستم های اطلاعات مکانی- دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین محمد طالعی m. taleai گروه سیستم های اطلاعات مکانی- دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین

مدل سازی و ارزیابی تناسب اراضی به عنوان پیش نیاز برنامه ریزی کاربری اراضی به منظور استفاده های صحیح از آن، از نیازهای ضروری انسان متمدن امروزی است. امروزه نقش gis و روش های تصمیم گیری چند معیاره مکانی در این زمینه بسیار پر رنگ شده است. این تحقیق با ترکیب روش های تصمیم گیری چند معیاره گروهی- مکانی فازی topsis-owa و gis به مدلسازی تناسب اراضی مسکونی ناحیه کرمانشاه که شامل شهرستان های کرمانشاه، هر...

Journal: :Engineering Letters 2007
R. Sukanesh R. Harikumar

of four different types of fuzzy aggregation methods in classification of epilepsy risk levels from EEG Signal parameters. The fuzzy technique is the first level classifier which works on the EEG Signal extracted features (patterns) such as energy, variance, peaks, events, duration and covariance. These features are obtained from an epoch of 2 seconds in all sixteen channels. Each epoch is samp...

Journal: :J. Applied Mathematics 2012
Sidong Xian

With respect to multiple attribute group decision making MAGDM problems, in which the attribute weights take the form of real numbers, and the attribute values take the form of fuzzy linguistic scale variables, a decision analysis approach is proposed. In this paper, we develop a new fuzzy linguistic induce OWA FLIOWA operator and analyze the properties of it by utilizing some operational laws ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->