نتایج جستجو برای: forecasting performance
تعداد نتایج: 1085145 فیلتر نتایج به سال:
Forecasting accuracy drives the performance of inventory management. This study is to investigate and compare different forecasting methods like Moving Average (MA) and Autoregressive Integrated Moving Average (ARIMA) with Neural Networks (NN) models as Feed-forward NN and Nonlinear Autoregressive network with eXogenous inputs (NARX). Data used to forecast is acquired from inventory database of...
This paper investigates artificial neural networks prediction modeling of foreign currency rates using Levenberg Marquardt (LM) learning algorithms. The models were trained from historical data using US Dollar (USD) currency rates against Indonesian Rupiah (IDR). The forecasting performance of the models was evaluated using a number of statistical measurements and compared. The results show tha...
Electrical power forecasting plays a vital role in power system administration and planning. Inaccurate forecasting can lead to the waste of scarce energy resources, electricity shortages, and even power grid collapses. On the other hand, accurate electricity power forecasting can enable reliable guidance for the planning of power production and the operation of a power system, which is also im...
Accurate box office forecasting models are developed by considering competition and word-of-mouth (WOM) effects in addition to screening-related information. Nationality, genre, ratings, and distributors of motion pictures running concurrently with the target motion picture are used to describe the competition, whereas the numbers of informative, positive, and negative mentions posted on social...
Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural...
The Vector Autoregressive (VAR) model, the Error Correction Model (ECM), and the Kalman Filter Model (KFM) are used to forecast UK stock prices. The forecasting performance of the three models is compared using out of sample forecasting. The results show that the forecasting performance of the ECM is better than that of the VAR and the KFM, and that the VAR performs a forecasting better than th...
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autor...
Horizon-matched historical volatility is commonly used to forecast future volatility for option valuation under the Statement of Financial Accounting Standards 123R. In this paper, we empirically investigate the performance of using historical volatility to forecast long-term stock return volatility in comparison with a number of alternative forecasting methods. Analyzing forecasting errors and...
A number of researchers have developed models that use test market data to generate forecasts of a new product’s performance. However, most of these models have ignored the effects of marketing covariates. In this paper we examine what impact these covariates have on a model’s forecasting performance and explore whether their presence enables us to reduce the length of the model calibration per...
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید