Let ∆ be the ball |x| < 1 in the complex vector space C, let f : ∆ → C be a holomorphic mapping and let M be a positive integer. Assume that the origin 0 = (0, . . . , 0) is an isolated fixed point of both f and the M -th iteration f of f . Then for each factor m of M, the origin is again an isolated fixed point of f and the fixed point index μfm(0) of f m at the origin is well defined, and so ...