let g be a finite group and let $gk(g)$ be the prime graph of g. we assume that $n$ is an odd number. in this paper, we show that if $gk(g)=gk(b_n(p))$, where $ngeq 9$ and $pin {3,5,7}$, then g has a unique nonabelian composition factor isomorphic to $b_n(p)$ or $c_n(p)$ . as consequences of our result, $b_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the validity of a con...