نتایج جستجو برای: exact 1 step dominating set
تعداد نتایج: 3499544 فیلتر نتایج به سال:
In a reconfiguration version of decision problem \(\mathcal {Q}\) the input is an instance and two feasible solutions S T. The objective to determine whether there exists step-by-step transformation between T such that all intermediate steps also constitute solutions. this work, we study parameterized complexity Connected Dominating Set Reconfiguration (CDS-R). It was shown in previous work (DS...
In this paper we study the NP-complete problem of finding small k-dominating sets in general graphs, which allow k−1 nodes to fail and still dominate the graph. The classic minimum dominating set problem is a special case with k = 1. We show that the approach of having at least k dominating nodes in the neighborhood of every node is not optimal. For each α > 1 it can give solutions k α times la...
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
We introduce the exact coloured k-enclosing object problem: given a set P of n points in R, each of which has an associated colour in {1, . . . , t}, and a vector c = (c1, . . . , ct), where ci ∈ Z for each 1 ≤ i ≤ t, find a region that contains exactly ci points of P of colour i for each i. We examine the problems of finding exact coloured k-enclosing axis-aligned rectangles, squares, discs, a...
Inclusion/exclusion branching is a way to branch on requirements imposed on problems, in contrast to the classical branching on parts of the solution. The technique turned out to be useful for finding and counting (minimum) dominating sets (van Rooij et al., ESA 2009). In this paper, we extend the technique to the setting where one is given a set of properties and seeks (or wants to count) solu...
Let be a simple graph with vertex set and edges set . A set is a dominating set if every vertex in is adjacent to at least one vertex in . An eternal 1-secure set of a graph G is defined as a dominating set such that for any positive integer k and any sequence of vertices, there exists a sequence of guards with and either or and is a dominating set. If we take a guard on every ver...
A number of optimization methods require as a rst step the construction of a dominating set (a set containing an optimal solution) enjoying properties such as compactness or convexity. In this note we address the problem of constructing dominating sets for problems whose objective is a componentwise nondecreasing function of (possibly an in nite number of) convex functions, and we show how to o...
A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-opti...
An exponential dominating set of graph $G = (V,E )$ is a subset $Ssubseteq V(G)$ such that $sum_{uin S}(1/2)^{overline{d}{(u,v)-1}}geq 1$ for every vertex $v$ in $V(G)-S$, where $overline{d}(u,v)$ is the distance between vertices $u in S$ and $v in V(G)-S$ in the graph $G -(S-{u})$. The exponential domination number, $gamma_{e}(G)$, is the smallest cardinality of an exponential dominating set....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید