نتایج جستجو برای: degradable scaffolds
تعداد نتایج: 21347 فیلتر نتایج به سال:
The treatment of anterior cruciate ligament (ACL) failures remains a current clinical challenge. The present study aims at providing suitable degradable scaffolds for ligament tissue engineering. First, we focus on the design and the evaluation of poly(lactide)/poloxamer or poly(lactide)/poloxamine multiblock copolymers selected and developed to have suitable degradation and mechanical properti...
Disease and injury to human tissue, especially musculoskeletal tissue, is a prevalent concern to the public, affecting millions of people each year. Current treatment options involving autografts and allografts are hindered by limited availability and risk of immunogenicity, respectively. In order to overcome these limitations, a transdisiplinary regenerative engineering strategy has emerged wi...
Degradable dendrimer-like PEOs were designed using an original ABC-type branching agent featuring a cleavable ketal group, following an iterative divergent approach based on the anionic ring opening polymerization (AROP) of ethylene oxide and arborization of PEO chain ends. A seventh generation dendrimer-like PEO carrying 192 peripheral hydroxyls and exhibiting a molar mass of 446 kg · mol(-1) ...
This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and d...
O-benzyl-L-serine carboxyanhydrides were synthesized via diazotization of O-benzyl-L-serine with sodium nitrite in aqueous sulfuric acid solution followed by cyclization of the resulting serine-based α-hydroxy acid with phosgene. Degradable, water-soluble poly(α-hydroxy acids) bearing pendant hydroxyl groups were readily prepared under mild conditions via ring-opening polymerization of O-benzyl...
Hydroxyapatite (HA) nanoparticles are similar to bone apatite in size, phase composition, and crystal structure. When compared with micron-size HA particles, nano-HA possesses improved mechanical properties and superior bioactivity for promoting bone growth and regeneration. However, scaffolds fabricated from nano-HA alone cannot meet the mechanical requirements for direct-loading applications....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید