نتایج جستجو برای: dedicated improved pso
تعداد نتایج: 500406 فیلتر نتایج به سال:
Particle swarm optimization (PSO) algorithm is simple stochastic global optimization technique, but it exists unbalanced global and local search ability, slow convergence speed and solving accuracy. An improved simulated annealing (ISAM) algorithm is introduced into the PSO algorithm with crossover and Gauss mutation to propose an improved PSO (ISAMPSO) algorithm based on the mutation operator ...
Keywords: PSO QPSO Mean best position Weight parameter WQPSO a b s t r a c t Quantum-behaved particle swarm optimization (QPSO) algorithm is a global convergence guaranteed algorithms, which outperforms original PSO in search ability but has fewer parameters to control. In this paper, we propose an improved quantum-behaved particle swarm optimization with weighted mean best position according t...
Particle swarm optimization (PSO) has undergone many changes since its introduction in 1995. Being a stochastic algorithm, PSO and its randomness present formidable challenge for the theoretical analysis of it, and few of the existing PSO improvements have make an effort to eliminate the random coefficients in the PSO updating formula. This paper analyzes the importance of the randomness in the...
Chaotic catfish particle swarm optimization (C-CatfishPSO) is a novel optimization algorithm proposed in this paper. C-CatfishPSO introduces chaotic maps into catfish particle swarm optimization (CatfishPSO), which increase the search capability of CatfishPSO via the chaos approach. Simple CatfishPSO relies on the incorporation of catfish particles into particle swarm optimization (PSO). The in...
NNPC has been used widely to control nonlinear systems. However traditional gradient decent algorithm (GDA) needs a large computational cost, so that NNPC is not acceptable for systems with rapid dynamics. To apply NNPC in fast control of mobile robots, the paper proposes an improved optimization technique, particle swarm optimization with controllable random exploration velocity (PSO-CREV), to...
The standard Particle Swarm Optimization (PSO) algorithm is a novel evolutionary algorithm in which each particle studies its own previous best solution and the group’s previous best to optimize problems. One problem exists in PSO is its tendency of trapping into local optima. In this paper, a fast particle swarm optimization (FPSO) algorithm is proposed by combining PSO and the Cauchy mutation...
The popular fuzzy c-means algorithm (FCM) converges to a local minimum of the objective function. Hence, different initializations may lead to different results. The important issue is how to avoid getting a bad local minimum value to improve the cluster accuracy. The particle swarm optimization (PSO) is a popular and robust strategy for optimization problems. But the main difficulty in applyin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید