نتایج جستجو برای: constraint qualification
تعداد نتایج: 85095 فیلتر نتایج به سال:
Optimality criteria form the foundations of mathematical programming both theoretically and computationally. In general, these criteria can be classified as either necessary or sufficient. Of course, one would like to have the same criterion be both necessary and sufficient. However, this occurs only under somewhat ideal conditions which are rarely satisfied in practice. In the absence of conve...
For a locally optimal solution to the nonlinear semidefinite programming problem, under Robinson’s constraint qualification, the following conditions are proved to be equivalent: the strong second order sufficient condition and constraint nondegeneracy; the nonsingularity of Clarke’s Jacobian of the Karush-Kuhn-Tucker system; the strong regularity of the Karush-Kuhn-Tucker point; and others.
Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points, justifying their stopping criteria. In this paper we introduce a sequential optimality condition that takes into account second-order information and that allows us to improve the global convergence assumptions of sev...
In this paper, we study the nonconvex nonsmooth optimization problem (P) of minimizing a tangentially convex function with inequality constraints where constraint functions are convex. This is done by using cone tangential subdifferentials together new qualification. Indeed, present qualification to guarantee that Karush-Kuhn-Tucker conditions necessary and sufficient for optimality (P). Moreov...
In mathematical programming, constraint qualifications are essential elements for duality theory. Recently, necessary and sufficient constraint qualifications for Lagrange duality results have been investigated. Also, surrogate duality enables one to replace the problem by a simpler one in which the constraint function is a scalar one. However, as far as we know, a necessary and sufficient cons...
In this note, we prove that the KKT mapping for nonlinear semidefinite optimization problem is upper Lipschitz continuous at the KKT point, under the second-order sufficient optimality conditions and the strict Robinson constraint qualification.
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality...
In this paper, we provide a complete characterization of the robust isolated calmness of the KarushKuhn-Tucker (KKT) solution mapping for convex constrained optimization problems regularized by the nuclear norm function. This study is motivated by the recent work in [8], where the authors show that under the Robinson constraint qualification at a local optimal solution, the KKT solution mapping...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید