نتایج جستجو برای: connected domination number
تعداد نتایج: 1270620 فیلتر نتایج به سال:
The weakly connected domination subdivision number sdγw(G) of a connected graph G is the minimum number of edges which must be subdivided (where each edge can be subdivided at most once) in order to increase the weakly connected domination number. The graph is strongγw-subdivisible if for each edge uv ∈ E(G) we have γw(Guv) > γw(G), where Guv is a graph G with subdivided edge uv. The graph is s...
Let G = (V,E) be a graph. A subset S ⊆ V is a dominating set of G if every vertex not in S is adjacent to a vertex in S. A set D̃ ⊆ V of a graph G = (V,E) is called an outer-connected dominating set for G if (1) D̃ is a dominating set for G, and (2) G[V \ D̃], the induced subgraph of G by V \ D̃, is connected. The minimum size among all outer-connected dominating sets of G is called the outerconnec...
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
A subset S ⊆ V (G) is a double dominating set of G if S dominates every vertex of G at least twice. The double domination number dd(G) is the minimum cardinality of a double dominating set of G. The double domination subdivision number sddd(G) is the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to increase the double domination n...
In [J. Graph Theory 13 (1989) 749–762], McCuaig and Shepherd gave an upper bound of the domination number for connected graphs with minimum degree at least two. In this paper, we propose a simple strategy which, together with the McCuaig-Shepherd theorem, gives a sharp upper bound of the domination number via the number of leaves. We also apply the same strategy to other domination-like invaria...
We prove that for graphs of order n, minimum degree δ ≥ 2 and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 1 3 + 2 3g ) n. As a corollary this implies that for cubic graphs of order n and girth g ≥ 5 the domination number γ satisfies γ ≤ ( 44 135 + 82 135g ) n which improves recent results due to Kostochka and Stodolsky (An upper bound on the domination number of n-vertex connected cubic...
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید