نتایج جستجو برای: chebyshev halley method

تعداد نتایج: 1633317  

M. A. Fariborzi Araghi M. Bahmanpour S. Daliri

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

Journal: :iranian journal of science and technology (sciences) 2012
g. b. loghmani

in this paper, an effective direct method to determine the numerical solution of linear and nonlinear fredholm and volterra integral and integro-differential equations is proposed. the method is based on expanding the required approximate solution as the elements of chebyshev cardinal functions. the operational matrices for the integration and product of the chebyshev cardinal functions are des...

2010
Nabih N. Abdelmalek

A method for calculating the strict Chebyshev solution of overdetermined systems of linear equations using linear programming techniques is described. This method provides: (1) a way to determine, for the majority of cases, all the equations belonging to the characteristic set, (2) an efficient method to obtain the inverse of the matrix needed to calculate the strict Chebyshev solution, and (3)...

2014
Junghan Kim Wonkyu Chung Sunyoung Bu Philsu Kim

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower deg...

Journal: :iranian journal of science and technology (sciences) 2013
h. kheiri

a computational method for numerical solution of a nonlinear volterra and fredholm integro-differentialequations of fractional order based on chebyshev cardinal functions is introduced. the chebyshev cardinaloperational matrix of fractional derivative is derived and used to transform the main equation to a system ofalgebraic equations. some examples are included to demonstrate the validity and ...

1996
Jie Shen

We introduce a new and eecient Chebyshev-Legendre Galerkin method for elliptic problems. The new method is based on a Legendre-Galerkin formulation, but only the Chebyshev-Gauss-Lobatto points are used in the computation. Hence, it enjoys advantages of both the Legendre-Galerkin and Chebyshev-Galerkin methods.

Journal: :computational methods for differential equations 0
m. javidi university of tabriz

in this paper, the chebyshev spectral collocation method(cscm) for one-dimensional linear hyperbolic telegraph equation is presented. chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. a straightforward implementation of these methods involves the use of spectral differentiation matrices. firstly, we transform ...

Journal: :Int. J. Comput. Math. 2010
Miquel Grau-Sánchez José Manuel Gutiérrez Jiménez

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...

1998
J. A. C. Weideman

presents a modiied Chebyshev pseudospec-tral method, involving mapping of the Chebyshev points, for solving rst-order hyperbolic initial boundary value problems. It is conjectured that the time step restriction for the modiied method is O(N ?1) compared to O(N ?2) for the standard Chebyshev pseudospectral method, where N is the number of discretization points in space. In the present paper we s...

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید