we exhibit an explicit construction for the second cohomology group $h^2(l, a)$ for a lie ring $l$ and a trivial $l$-module $a$. we show how the elements of $h^2(l, a)$ correspond one-to-one to the equivalence classes of central extensions of $l$ by $a$, where $a$ now is considered as an abelian lie ring. for a finite lie ring $l$ we also show that $h^2(l, c^*) cong m(l)$...