نتایج جستجو برای: bayesian clustering

تعداد نتایج: 181928  

2011
Dazhuo Li Patrick Shafto

Most clustering algorithms assume that all dimensions of the data can be described by a single structure. Cross-clustering (or multiview clustering) allows multiple structures, each applying to a subset of the dimensions. We present a novel approach to crossclustering, based on approximating the solution to a Cross Dirichlet Process mixture (CDPM) model [Shafto et al., 2006, Mansinghka et al., ...

Journal: :Bioinformatics 2013
Eric F. Lock David B. Dunson

MOTIVATION In biomedical research a growing number of platforms and technologies are used to measure diverse but related information, and the task of clustering a set of objects based on multiple sources of data arises in several applications. Most current approaches to multisource clustering either independently determine a separate clustering for each data source or determine a single 'joint'...

2016
Sharad Vikram Sanjoy Dasgupta

Clustering is a powerful tool in data analysis, but it is often difficult to find a grouping that aligns with a user’s needs. To address this, several methods incorporate constraints obtained from users into clustering algorithms, but unfortunately do not apply to hierarchical clustering. We design an interactive Bayesian algorithm that incorporates user interaction into hierarchical clustering...

2008
Peter Mueller Fernando Quintana Gary Rosner

We propose a model for covariate-dependent clustering, i.e., we develop a probability model for random partitions that is indexed by covariates. The motivating application is inference for a clinical trial. As part of the desired inference we wish to define clusters of patients. Defining a prior probability model for cluster memberships should include a regression on patient baseline covariates...

2004
Fabio Valente Christian Wellekens

In this paper we explore the use of Variational Bayesian (VB) learning in unsupervised speaker clustering. VB learning is a relatively new learning technique that has the capacity of doing at the same time parameter learning and model selection. We tested this approach on the NIST 1996 HUB-4 evaluation test for speaker clustering when the speaker number is a priori known and when it has to be e...

2017
Vu Nguyen Dinh Q. Phung Trung Le Hung Bui

We propose a general framework for discriminative Bayesian nonparametric clustering to promote the inter-discrimination among the learned clusters in a fully Bayesian nonparametric (BNP) manner. Our method combines existing BNP clustering and discriminative models by enforcing latent cluster indices to be consistent with the predicted labels resulted from probabilistic discriminative model. Thi...

Journal: :Neural networks : the official journal of the International Neural Network Society 2007
Cédric Archambeau Michel Verleysen

A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید