نتایج جستجو برای: bagging
تعداد نتایج: 2077 فیلتر نتایج به سال:
Bagging is a useful method to improve fruit quality by altering its exposure to light, whereas its effect on fruit volatiles production is inconsistent, and the genes responsible for the observed changes remain unknown. In the present study, single-layer yellow paper bags were used to study the effects of bagging treatment on the formation of C6 aldehydes in peach fruit (Prunus persica L. Batsc...
Ensembles of decision trees often exhibit greater predictive accuracy than single trees alone. Bagging and boosting are two standard ways of generating and combining multiple trees. Boosting has been empirically determined to be the more eeective of the two, and it has recently been proposed that this may be because it produces more diverse trees than bagging. This paper reports empirical nding...
Learning from imbalanced data is an important problem in data mining research. Much research has addressed the problem of imbalanced data by using sampling methods to generate an equally balanced training set to improve the performance of the prediction models, but it is unclear what ratio of class distribution is best for training a prediction model. Bagging is one of the most popular and effe...
Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, i...
The error rate of decision-tree and other classi-cation learners can often be much reduced by bagging: learning multiple models from bootstrap samples of the database, and combining them by uniform voting. In this paper we empirically test two alternative explanations for this, both based on Bayesian learning theory: (1) bagging works because it is an approximation to the optimal procedure of B...
Many applications aim to learn a high dimensional parameter of a data generating distribution based on a sample of independent and identically distributed observations. For example, the goal might be to estimate the conditional mean of an outcome given a list of input variables. In this prediction context, bootstrap aggregating (bagging) has been introduced as a method to reduce the variance of...
Abstract: Bagging is a device intended for reducing the prediction error of learning algorithms. In its simplest form, bagging draws bootstrap samples from the training sample, applies the learning algorithm to each bootstrap sample, and then averages the resulting prediction rules. More generally, the resample size M may be different from the original sample size N , and resampling can be done...
Machine Learning tools are increasingly being applied to analyze data from microarray experiments. These include ensemble methods where weighted votes of constructed base classifiers are used to classify data. We compare the performance of AdaBoost, bagging and BagBoost on gene expression data from the yeast cell cycle. AdaBoost was found to be more effective for the data than bagging. BagBoost...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید