نتایج جستجو برای: arsenite transporting atpases
تعداد نتایج: 18543 فیلتر نتایج به سال:
Resistance to toxic oxyanions of arsenic and antimony in Escherichia coli results from active efflux of these anions out of the cell. Extrusion is an active process mediated by an ATP-dependent pump composed of two types of subunits, the integral membrane ArsB protein and the catalytic ArsA subunit. An in vitro assay for transport in everted membrane vesicles of E. coli was developed. Uptake of...
Previously published phylogenetic trees reconstructed on Rieske protein sequences frequently are at odds with each other, with those of other subunits of the parent enzymes and with small subunit rRNA trees. These differences are shown to be at least partially if not completely due to problems in the reconstruction procedures. A major source of erroneous Rieske protein trees lies in the presenc...
The aim of the present work was to investigate the stimulation of the plasma-membrane Ca2+-transporting ATPase by negatively charged phospholipids. The Ca2+-transporting ATPase was purified from pig stomach smooth muscle and from pig erythrocytes, and was reactivated with phosphatidylcholine (PC) in the presence and absence of negatively charged phospholipids. The substitution of phosphatidylin...
Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and g...
We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting P(IB)-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH metal-binding motif in TM6 and a histidine-rich N-terminal metal-binding domain. We have cloned ...
Plasmids in both Escherichia coli and Staphylococcus aureus contain an "operon" that confers resistance to arsenate, arsenite, and antimony(III) salts. The systems were always inducible. All three salts, arsenate, arsenite, and antimony(III), were inducers. Mutants and a cloned deoxyribonucleic acid fragment from plasmid pI258 in S. aureus have lost arsenate resistance but retained resistances ...
Seminal regulatory controls of microbial arsenite [As(III)] oxidation are described in this study. Transposon mutagenesis of Agrobacterium tumefaciens identified genes essential for As(III) oxidation, including those coding for a two-component signal transduction pair. The transposon interrupted a response regulator gene (referred to as aoxR), which encodes an ntrC-like protein and is immediate...
Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal t...
High arsenic (As) concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variatio...
Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compou...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید