نتایج جستجو برای: arnoldi method
تعداد نتایج: 1630255 فیلتر نتایج به سال:
For the nonlinear eigenvalue problem T (λ)x = 0 we propose an iterative projection method for computing a few eigenvalues close to a given parameter. The current search space is expanded by a generalization of the shift-and-invert Arnoldi method. The resulting projected eigenproblems of small dimension are solved by inverse iteration. The method is applied to a rational eigenvalue problem gover...
Novel memory-efficient Arnoldi algorithms for solving matrix polynomial eigenvalue problems are presented. More specifically, we consider the case of matrix polynomials expressed in the Chebyshev basis, which is often numerically more appropriate than the standard monomial basis for a larger degree d. The standard way of solving polynomial eigenvalue problems proceeds by linearization, which in...
This study proposes a method for the acceleration of the projection method to compute a few eigenvalues with the largest real parts of a large nonsymmetric matrix. In the eld of the solution of the linear system, an acceleration using the least squares polynomial which minimizes its norm on the boundary of the convex hull formed with the unwanted eigenvalues are proposed. We simplify this metho...
Heinrich Voss Hamburg University of Technology 115.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-2 115.2 Analytic matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-3 115.3 Variational Characterization of Eigenvalues . . . . . . . . 115-7 115.4 General Rayleigh Functionals . . . . . . . . . . . . . . . . . . . ...
This paper introduces two new algorithms, belonging to the class of Arnoldi-Tikhonov regularization methods, which are particularly appropriate for sparse reconstruction. The main idea is to consider suitable adaptively-defined regularization matrices that allow the usual 2-norm regularization term to approximate a more general regularization term expressed in the p-norm, p ≥ 1. The regularizat...
A Newton–Krylov method is an implementation of Newton’s method in which a Krylov subspace method is used to solve approximately the linear systems that characterize steps of Newton’s method. Newton–Krylov methods are often implemented in “matrix-free” form, in which the Jacobian-vector products required by the Krylov solver are approximated by finite differences. Here we consider using approxim...
Implicitly restarted Arnoldi methods and eigenvalues of the discretized Navier Stokes equations. Abstract We are concerned with nding a few eigenvalues of the large sparse nonsymmetric generalized eigenvalue problem Ax = Bx that arises in stability studies of incompressible uid ow. The matrices have a block structure that is typical of mixed nite-element discretizations for such problems. We ex...
In this article, we will study the link between a method for computing eigenvalues closest to the imaginary axis and the implicitly restarted Arnoldi method. The extension to eigenvalues closest to a vertical line is straightforward, by incorporating a shift. Without loss of generality we will restrict ourselves here to the imaginary axis. In a recent publication, Meerbergen and Spence discusse...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید