نتایج جستجو برای: archimedean mathbb z rings
تعداد نتایج: 206321 فیلتر نتایج به سال:
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
Let $R$ be a commutative ring and $M$ be an $R$-module with $T(M)$ as subset, the set of torsion elements. The total graph of the module denoted by $T(Gamma(M))$, is the (undirected) graph with all elements of $M$ as vertices, and for distinct elements $n,m in M$, the vertices $n$ and $m$ are adjacent if and only if $n+m in T(M)$. In this paper we study the domination number of $T(Gamma(M))$ a...
<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M3">\begin{document}$ p $\end{document}</tex-math></inline-formula> be a prime number and id="M4">\begin{document}$ r, s, t positive integers such that id="M5">\begin{document}$ r\le s\le $\end{document}</tex-math></inline-formula>. A id="M6">\begin{document}$ \mathbb{Z}_{p^r}\mathb...
In this paper we classify fuzzy subgroups of a rank-3 abelian group $G = mathbb{Z}_{p^n} + mathbb{Z}_p + mathbb{Z}_p$ for any fixed prime $p$ and any positive integer $n$, using a natural equivalence relation given in cite{mur:01}. We present and prove explicit polynomial formulae for the number of (i) subgroups, (ii) maximal chains of subgroups, (iii) distinct fuzzy subgroups, (iv) non-isomorp...
(Berkovich spaces over $${\mathbb {Z}}$$ : étale morphisms).— We develop properties of unramified, and smooth morphisms between Berkovich . prove that they satisfy analogous to those schemes we provide analytification criteria. Our results hold for any valued field, rings integers a number field discrete valuation rings. Those cases are treated by unified way.
Given a finite family $\mathcal U$ of subsets $\mathbb Z^d\setminus \{0\}$, the U$-$voter\ dynamics$ in space configurations $\{+,-\}^{\mathbb Z^d}$ is defined as follows: every $v\in\mathbb Z^d$ has an independent exponential random clock, and when clock at $v$ rings, vertex chooses $X\in\mathcal uniformly random. If set $v+X$ entirely state $+$ (resp. $-$), then updates to otherwise nothing h...
in this paper we consider the group algebra $r(c_2times d_infty)$. it is shown that $r(c_2times d_infty)$ can be represented by a $4times 4$ block circulant matrix. it is also shown that $mathcal{u}(mathbb{z}_2(c_2times d_infty))$ is infinitely generated.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید