نتایج جستجو برای: گراف ناجابه جایی
تعداد نتایج: 10097 فیلتر نتایج به سال:
در این پایان نامه به بررسی گراف متباین حلقه ها می پردازیم. فرض می کنیم r یک حلقه یکدار (نه لزوماً جابه جایی) باشد. یک گراف روی r را با ?_0 (r) و رأس هایی از عناصر r نشان می دهیم که دو رأس a و b مجاورند اگر و تنها اگر ra+rb=r. همچنین?(r) گرافی است که رئوس آن عناصر غیر یکال حلقه r است. خصوصیت های این گراف ها روی حلقه های جابه جایی و غیرجابه جایی بررسی می کنیم. گزاره هایی در مورد همبندی و ناهمبندی،...
هدف این رساله مطالعه خواص برخی از گراف های نسبت داده شده به یک حلقه جابه جایی می باشد. یکی از گراف های مورد نظر، گراف منظم ایده آل های یک حلقه جابه جایی می باشد. این گراف در حالتی که حلقه زمینه، آرتینی است قبلا مورد بررسی قرار گرفته است. در این رساله ما رفتار این گراف را بر روی یک حلقه نوتری بررسی می کنیم. در بخشی از این رساله همه حلقه هایی را رده بندی می کنیم که گراف نظیر آن ها همبند باشد و قط...
فرض کنیم r حلقه جابه جایی باشد. گراف کلی r را که باt(ᴦ(r) نشان داده می شود، گرافی است با همه اعضای r، به عنوان رئوس ودوراس x, y ∈ r مجاورند، اگروفقط اگرx + y ∈ z(r) ، که در آن (z(r مقسوم علیه های صفرحلقه r می باشد. گراف منظم حلقه r که با reg(ᴦ(r) نشان داده می شود زیرگرافی القایی از t(ᴦ(r) است که رئوس آن، عناصرمنظم حلقه r می باشد وگراف مقسوم علیه صفرحلقه r که با z(ᴦ(r)) نشان داده می شود، زیرگراف...
در این پایان نامه فرض بر این است که c یک زیر مجموعه محدب و بسته از فضای باناخ انعکاسی e, } یک خانواده از خود نگاشت ها در c از نوع و (مجموعه نقاط ثابت مشترک ) ناتهی باشند. برخی از نتایج مهم این پایان نامه عبارتند: الف) اگر شامل یک زیر فضای 3-بعدی از e باشد , آن گاه یک انقباض ناگسترده از c است. ب) اگر جابه جایی باشد در این صورت یک انقباض از نوع مانند r از c به روی وجود دارد, که برای هر , داشته...
بسیاری از وضیعت های دنیای واقعی را می توان به راحتی به وسیله نموداری متشکل از مجموعه ای از نقاط و خطوطی که زوج های معینی از این نقاط را به هم وصل می کنند، توصیف کرد. مثلاً نقاط می توانند معرف افراد باشند، خطوط واصل بین زوج ها می توانند معرف دوستی ها باشند و یا نقاط ممکن است مراکز ارتباط های بین آنها باشند. در چنین نمودارهایی آنچه بیشتر مورد توجه است آن است که آیا دو نقطه مفروضبه وسیله یک خط ...
روش های زیادی برای نسبت دادن یک گراف به یک گروه وجود دارد. ما گراف زیر را به گروه g نسبت می دهیم.فرض کنیم g گروهی غیر آبلی و z(g) مرکز آن باشد. گراف غیر جابه جایی گروه g را با ?_g نمایش داده و به صورت زیر تعریف می کنیم: (g(g را مجموعه ی رئوس گراف ?_g در نظر می گیریم و دو راس x و y را زمانی به یکدیگر وصل می کنیم که xy? yx. ما نشان می دهیم اگر ? _p و ? _h یکریخت باشند، آن گ...
فرض کنید r یک حلقه جابه جایی و یکدار باشد و j(r) ایده آل جیکوبسن r باشد. گراف جیکوبسن حلقه r که با $mathfrack{j_r}$ نشان داده می شود، گرافی است با مجموعه رئوس r j(r) به طوری که دو رأس متمایز x و y به یکدیگر متصلند اگر 1-xy عنصری غیر یکه از r باشد. در این رساله به بررسی برخی ویژگی های گراف جیکوبسن از قبیل همبندی، مسطحی و تام بودن می پردازیم. همچنین پایاهای عددی از قبیل قطر، کمر...
در این پایان نامه ابتدا به معرفی خاصیت a می پردازیم. سپس خاصیت a را به حلقه های ناجابجایی توسیع می دهیم و برخی از توسیع های حلقه ای که خاصیت a دارد را بررسی میکنیم.( برای مثال: حلقه ماتریس ها حلقه چندجمله ای ها، حلقه سری های توانی و حلقه کسرهای کلاسیک ) کلاس حلقه هایی که خاصیت a دارند بسیار بزرگ است. از جمله هر حلقه جابجایی نوتری که هر ایدآل اول آن ماکسیمال باشد خاصیت a دارد...
پس از اینکه حاگی گروه های متناهی دارای گراف اول یکسان با گروه های ساده پراکنده را در سال ???? معین کرد، امیر خسروی و بهروز خسروی مفهوم تشخیص پذیری گروه های متناهی به وسیله گراف اول را در سال ???? معرفی کردند. گرچه این تشخیص پذیری برای تعداد زیادی از گروه های ساده متناهی با گراف اول ناهمبند ثابت شده است، اما a_?? (?) تنها گروه با گراف اول همبند می باشد که مسأله تشخیص پذیری آن به وسیله گراف اول ت...
در این پایان نامه ابتدا ساختار حلقه های تمیز قوی و j-تمیز قوی را معرفی می کنیم و نشان می دهیم که ماتریس های 2*2 روی حلقه های موضعی جابه جایی، j--تمیز قوی نمی باشند. این انگیزه ای شد که به مطالعه و بررسی ماتریس های -تمیز قوی روی حلقه های موضعی ناجابه جایی بپردازیم. معیار j-تمیز قوی بودن ماتریس های 2*2 به صورت حل معادله درجه دوم داده خواهد شد. در ادامه به عنوان توسیع، j--تمیز قوی بودن حلقه ماتریس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید