نتایج جستجو برای: هایرز

تعداد نتایج: 61  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393

هدف در این رساله بررسی پایداری و ابر پایداری هایرز-اولام‏ ‎‎‎m‎-مشتق های ‏حلقه ای سه تایی و مشتق های حلقه ای سه تایی ژوردان روی جبر های باناخ سه تایی به روش نقطه ثابت می باشد. علاوه بر این همریختی حلقه ای ‏پکسیدر متعامد روی جبر های (دو تایی) باناخ متعامد را مورد مطالعه قرار می دهیم. نهایتا پایداری مشتق های سه تایی مرتبه بالای تقریبی در جبر های باناخ سه تایی را نیز مطالعه می کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه 1392

در این پایان نامه پایداری معادله تابعی زیر را در فضاهای نرمدار تصادفی گوناگون توسط روش های متعدد مورد مطالعه قرار می دهیم. ‎16f(x+4y)+f(4x-y)=306 [9f(x+ 1/3y)+f(x+2y)]+136f(x-y) -‎1394f(x+y)+425f(y)-1530f(x)‎ چون ‎ f(x)=ax^4 که ‎ a عدد حقیقی است، یک جواب معادله فوق می باشد لذا به آن معادله تابعی درجه چهار گوییم

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1387

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه 1391

در این پایان نامه به بررسی پایداری معادله تابعی غیر خطی جمعی - مربعی درجه دوم و درجه چهارم +(f(x+ 2y) + f(x - 2y) = 2f(x+y) + 2f(-x - y) + 2f(x - y (2f(y - x )- 4f(-x) – 2f(x) + f(2y) + f(-2y) – 4f(y)- 4f(-y پرداخته و با استفاده از روش نقطه ی ثابت پایداری معادله تابعی فوق را مورد بررسی قرار می دهیم ودر ادامه مجددا با استفاده از روش نقطه ی ثابت پایداری هایرز - اولام - راسیاس معادله...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1391

معادلات تابعی معادلاتی هستند که مجهول در آن ها به شکل تابع است. مشهورترین معادلات تابعی معادله تابعی کشی یعنی f(x+y)=f(x)+f(y) است که یکی از توابع صادق در این معادله f(x)=x است. هم چنین معادله تابعی مربعی f(x+y)+f(x-y)=2f(x)+2f(y) که یکی از جواب های آن تابع مربعی f(x)=x^2 است. سوال مهمی که در این جا مطرح است این است که، اگر تابعی تقریبا در یک معادله تابعی صدق کند، آیا به یک جواب آن معادله تابعی...

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1391

در سال ‎1940‎ ،اولام ‎‎‎‎‎‎‎‎‎‎ سوالی درباره نگاشت های تقریبی مطرح کرد به این مضمون که ((تحت چه شرایطی یک همریختی تقریبی به یک همریختی نزدیک می شود؟(( در سال ‎1941‎ ،هایرز‎‎جوابی مثبت به سوال اولام درفضاهای باناخ ارائه داد در واقع ثابت کرد اگر ‎ ‎??0 و f:x?y‎ نگاشتی از فضای نرم دار ‎ x ‎ به فضای باناخ ‎ y باشد به طوری که ‎‎ ?f(x+y)-f(x)-f(y)??? (x,y?x) (1) آن گاه نگاشت جمعی منحصر به فرد t:x?...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1391

فرض کنید (g,+,m,m) یک گروه اندازه پذیر، کامل، آبلی بطوریکه اندازه g متناهی و e یک فضای باناخ باشد. برای هر تابع f عملگرهای تفاضلی درجه دوم در فضاهای l^p را تعریف می کنیم و ثابت می کنیم که دقیقا یک تابع درجه دوم k و یک ثابت c وجود دارد،و در نهایت ثابت میکنیم که این عملگرها خطی، پیوسته و وارون پذیر است. فرض کنید e یک فضای باناخ و (x,+,m,m)یک نیم گروه کامل و عینا مساوی با صفر نیست و اندازه x متنا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1391

مبحث معادلات تابعی یک شاخه از ریاضیات است که پیدایش آن تقریباً به زمان تعریف تابع بر می گردد. در سال های 1747 و 1750، دالامبر سه مقاله چاپ کرد که آن ها آغاز کار روی معادلات تابعی بودند، اما اولین رشد معنی دار در به نظم در آوردن معادلات تابعی توسط مسئله ی قاعده متوازی الاضلاع نیروها ایجاد شد. ریاضیدان های مشهوری از جمله آبل، اویلر، پکسیدر، پواسون، دالامبر، فرشه، کوشی، کولموگوروف، گاوس و ینسن معاد...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1392

در این ‎رساله‏، ‎به ‎نقش و ‎‎?‎جایگاه ‎قضیه ‎نقطه ‎ثابت ‎در ‎‏حل معادلات ‎انتگرالی ‏ولترای‎ نوع دوم پرداخته ‎می ‎شود. ‎قصد ‎داریم‏، ‎از‎ قضیه ‎نقطه ‎ثابت در دو حوزه متفاوت‏، وجود جوابها و همچنین تحلیل خطا در روشهای عددی استفاده کنیم. ‎ ابتدا با ارائه چهار شرط انقباضی مختلف برای هسته‏، وجود و منحصر به فردی جوابها برای معادلات انتگرالی از نوع ولترا را بررسی می کنیم. یکی از اهداف مهم این قسمت‏، ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه 1392

آنالیز غیر خطی یکی از شاخه های رشته ریاضی است که اهمیت آن بر هیچ ریاضیدانی پوشیده نیست. لذا توجه دانشمندان زیادی را به خود جلب نموده است. این شاخه، در علوم دیگر از جمله گرایش های مهندسی و فیزیک کاربرد فراوان دارد و این به زیبایی و اهمیت آن افزوده است. به عنوان مثال می توان به مبحث نامساوی هااشاره نمود که امروزه دیده می شود دانشمندان زیادی دراین زمینه تحقیق و پژوهش می کنند. یکی دیگر از موضوعات م...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید