نتایج جستجو برای: نگاشت های انقباضی فازی
تعداد نتایج: 482754 فیلتر نتایج به سال:
نظریه نقطه ثابت کاربردهای متعددی در حل مسائل معادلات دیفرانسیل، نظریه بازی ها و اقتصاد دارد. همچنین نظریه فازی در علوم مختلفی کاربرد پیدا کرده است. به عنوان مثال ریاضیات فازی در فیزیک ذرات~کوانتومی، به خصوص در ارتباط با نظریه ریسمـــان و $epsilon$-بینهایت که توسط {it النشیه} معرفی شده است، را نام برد. نظریه نقطه ثابت نگاشتهای انقباضی در فضاهای متریک فازی شهودی به عنوان یک ابزار قدرتم...
در این رساله با استفاده از شرط انقباضی که توسط باناخ بیان شده است، وجود نقطه ی ثابت را بر روی فضاهای جی متریک و متریک مرتب جزئی مورد بررسی قرار می دهیم. همچنین با برخی گراف های جهت دار و به طور همبند ضعیف نشان می دهیم که یک نگاشت پاتا جی انقباضی چه موقع یک عملگر پیکارد است. در پایان به عنوان کاربردی از این قضایا نشان می دهیم که عملگر برنستین یک عملگر پیکارد ضغیف است.
در این پایان نامه به معرفی نگاشت های مجموعه مقداری انقباضی در فضای متریک کامل پرداخته، سپس قضیه نقطه ثابت را برای نگاشت های مجموعه مقداری در فضاهای فشرده و کامل ارائه می دهیم و در پایان با ارائه چند مثال درستی مطالب را بررسی می کنیم.
از آنجا که روابط ترتیبی بر صفحه مختلط قابل بیان نیست در این پایان نامه ابتدا با تعریف یک رابطه ترتیب جزئی روی صفحه مختلط و سپس با معرفی یک متر مختلط مقدار فضای متریک مختلط مقدار را توصیف میکنیم با بهبود شرایط انقباضی و با معرفی نگاشت های سازگار نظریه نقطه ثابت را بر فضای متریک مختلط مقدار تعمیم میدهیم سپس فضای جدید b-متریک را تعریف کرده و یک قضییه اساسی نقطه ثابت مشترک برای بک جفت نگاشت سازگار ...
فضاهای متری مخروط، تعمیمی از فضاهای متری هستند. در واقع چون مجموعه ی اعداد حقیقی (r) یک فضای باناخ حقیقی است، لذا فضاهای متری حالتی خاص از فضاهای متری مخروط می باشند. تعریف فضاهای متری مخروطبرای نخستین بار در سال 2007 توسط هوانگ و ژانگ ارائه شد. این دو محقق، قضایایی راجع به نقطه ثابت نگاشت های صادق در شرایط انقباضی مختلف را به این فضاهای تازه تعریف، تعمیم بخشیدند. پس از آن، نویسندگان بسیاری با...
تقریب نقاط ثابت نگاشت های ناانبساطی و تعمیم های آن ها در چند ده? اخیر رشد و نمو چشمگیری یافته است و هم اکنون یکی از زمینه های پژوهشی فعال و داغ محسوب می شود. توسع? کلاس نگاشت ها و تعمیم فضاهای مورد بحث، دو مسأل? مهم در این شاخ? پژوهشی می باشند. هدف این پایان نامه در راستای مسأل? اول، تقریب نقاط ثابت نگاشت های (i) مجانباً ناانبساطی (ii) ناانبساطی چند مقداری (iii) ...
در این رساله ابتدا قضیه ی نقطه ی ثابت ندلر و چند تعمیم از آن بیان شده است. سپس مفهوم انقباض تعمیم یافته را برای نگاشت های مجموعه مقداری تعریف کرده و با بیان چند قضیه، وجود نقاط ثابت برای این نگاشت ها را مورد بررسی قرار می دهیم. همچنین یک شمول دیفرانسیل هایپربولیک را به کمک این قضیه ها حل می کنیم. در ادامه چند قضیه ی نقطه ی ثابت جدید برای نگاشت های مجموعه مقداری تحت شرط انقباضی جدید اثبات می کنی...
در این پایان نامه، متریک فازی یک تابع حقیقی مقدار نامنفی روی گردایه ای از تمام نقاط فازی یک مجموعه $x$ مورد مطالعه قرار گرفته و تعمیمی از فضای متری فازی ارائه می گردد. علاوه بر آن تحت مفروضات مشخص نتایج متناظر قضایای نقطه ثابت باناخ و کریکز مورد بررسی قرار می گیرد. این پایان نامه توسیعی از مقاله ذیل است: a. deb ray and p. k. saha. fixed point theorems on generalized fuzzy metric spaces, ha...
نگاشت a یکنوای ترکیبی نامیده می شود هرگاه نسبت به مولفه اول صعودی و نسبت به مولفه دوم نزولی باشد.قضایاو نتایجی درباره نقاط ثابت چندتابعی های انقباضی و نگاشت های یکنوای ترکیبی در فضای متریک و متریک مخروطی بررسی می کنیم.
در این باب مفهوم فضای متریک جزیی هاسدورف را معرفی و نظریه ی نقطه ثابت برای توابع چند مقداری روی فضای متریک جزیی را با اثبات قضیه نقطه ثابت نادلر مورد مطالعه قرار داده و توسعه یافته ی نظریه ی نقطه ثابت برای نگاشت های چند مقداری را که در اقتصاد، معادلات دیفرانسیل کاربرد دارد را بیان می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید