نتایج جستجو برای: مسائل مقدار مرزی منفرد
تعداد نتایج: 106802 فیلتر نتایج به سال:
در این پایان نامه ، ضمن مطالعه روشهای آماری پیش بینی سریهای زمانی، به توصیف فراکتالها و سریهای زمانی فراکتالی پرداخته شده است. سپس کاربرد فراکتال در پیش بینی سریهای زمانی با توجه به رفتار نمای هارست مورد بررسی قرار گرفته است. در ادامه به بعضی خواص پایای سیستمهای دینامیکی آشوبی مانند نمای لیاپانوف و خودتشابهی اشاره شده و سپس روشهای پیش بینی سریهای زمانی آشوبی با جاذب پیچیدهدر یک فضا...
در این پایان نامه حل عددی مسایل مقدار ویژه ی منفرد و منظم برای معادلات دیفرانسیل معمولی جهت یافتن مقادیر ویژه و توابع ویژه متناظر مورد بررسی قرار می گیرد. ابتدا به معرفی مسایل استورم لیوویل پرداخته و روش های حل این مسایل را بررسی می کنیم. پس از آن با در نظر گرفتن حالت کلی مسایل مقدار ویژه، دو روش عددی پرکاربرد برای تعیین پارامترهای ویژه طوری که مسئله جواب غیر بدیهی داشته باشد، ارائه می نمای...
در این پایان نامه پس از بیان تعاریف مقدماتی دو طرح عددی برای یافتن حل تقریبی مسائل مقدار مرزی دو نقطه ای منفرد ارائه شده است، مسائلی که در فیزیولوژی بدان رسیده اند. که اجزای اصلی هر دو روی کرد حل، بکارگیری b اسپلاین مکعبی است. ابتدا در هر دو روش مانع تکینی رفع می شود بدین صورت که در روش اول قانون هوپیتال برای رفع تکینی حاصل از شرط مرزی y^ (0)=0 بکار گرفته می شود و در روش دوم چند جمله ای چی...
چکیده ندارد.
در این رساله انواع معادلات انتگرالی ذیل براساس ایده های از پری کاندیشینرها مورد بحث و بررسی قرار می گیرند: -1 معادلات انتگرالی منفرد چند بعدی -2 معادلات انتگرالی فوق منفرد -3 معادلات انتگرالی مرزی. بدین ترتیب بخاطر اهمیت موضوع، این رساله به دو بخش کلی تقسیم شده که هر بخش شامل زیربخش ها و فصول متفاوت می باشند که دستاوردهای جدید را به همراه دارند و از آنها مقالاتی استخراج شده که بعضی از آنها پذیر...
مدل سازی میدان گرانی و تعیین ژئوئید به روش مسئله مقدار مرزی، یک مسئله معکوس و بدوضع است که نیاز به پایدار سازی دارد. روش های متداول پایدار سازی هنگامی جواب صحیح را برآورد خواهند کرد که ماتریس وزن مشاهدات معلوم باشد و این شرط جزء فرضیات مسائل معمول پایدارسازی است. مشکل هنگامی حادتر می شود که از تلفیق مشاهدات گوناگون با وزن های متفاوت و نامعلوم برای تعیین ژئوئید در قالب یک مسئله مقدار مرزی بدوضع،...
دراین پایان نامه با توجه به اینکه اغلب از فضاهای اندازه پذیر ، هیلبرت ، باناخ و توابع محدب استفاده می شود ، ابتدا در فصل اول پیش نیازها، خلاصه ای از بحث فضاهای اندازه پذیر، هیلبرت و باناخ را مطرح می کند که در بردارنده تعاریف اساسی و یادآوری قضایایی است که در متن پایان نامه مورد استفاده قرار می گیرد. در فصل دوم ، ابتدا موضوع مقاله ای از ارب و ونگ که با استفاده از قضیه کراسنوسلسکی به اثبات قضیه ز...
در این رساله ابتدا در فصل اول برخی تعاریف و قضایای مقدماتی موردنیاز را معرفی می کنیم در فصل دوم وجود و چندگانگی جواب را برای یک مسأله تکین با شرط مرزی نیومن مورد مطالعه قرار داده و به کمک خمینه نهاری نشان می دهیم مسأله مورد نظر دارای حداقل دو جواب غیربدیهی است. در فصل سوم وجود جوابهای چندگانه برای یک دستگاه بیضوی با توابع وزن تغییر علامتی را تحقیق می کنیم. در فصل چهارم چهار مسأله مقدار مرزی را ...
در این رساله ابتدا برای آشنایی با حسابان کسری، مشتقات کسری ریمان-لیویل، کاپوتو و گرانوالد-لتنیکوف معرفی می شوند. سپس حل مسائل مقدار اولیه از مرتبه کسری با استفاده از روش های نیمه تحلیلی معروف مورد بررسی قرار می گیرد. مسائل مقدار مرزی از مرتبه کسری نیز با استفاده از روش های عددی مانند روش ماتریس های عملگر انتگرالی موجک، روش کنترل بهینه با استفاده از توابع بی اسپلاین و چبیشف و روش تفاضلات متناهی ...
مدلسازی میدان گرانی و تعیین ژئوئید به روش مسئله مقدار مرزی، یک مسئله معکوس و بدوضع است که نیاز به پایدارسازی دارد. روشهای متداول پایدارسازی هنگامی جواب صحیح را برآورد خواهند کرد که ماتریس وزن مشاهدات معلوم باشد و این شرط جزء فرضیات مسائل معمول پایدارسازی است. مشکل هنگامی حادتر میشود که از تلفیق مشاهدات گوناگون با وزنهای متفاوت و نامعلوم برای تعیین ژئوئید در قالب یک مسئله مقدار مرزی بدوضع،...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید