نتایج جستجو برای: مدل arfima

تعداد نتایج: 120201  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده مدیریت و حسابداری 1392

تورم به مفهوم رشد مستمر سطح عمومی قیمت ها از مهم ترین معضلات اقتصادی بسیاری از کشورها به ویژه کشورهای در حال توسعه می باشد. به رغم ادبیات بسیار وسیع درباره تورم و ارایه نظریات اقتصادی گوناگون در خصوص دلایل بروز آن، همچنان مباحث جدیدی در حوزه ادبیات مربوط به این پدیده در حال معرفی شدن و گسترش است. از جمله این مباحث، شناسایی و اندازه گیری تورم پایه است. تورم پایه به عنوان شاخصی که عوامل غیر پولی ...

Journal: :International Journal of Housing Markets and Analysis 2021

Purpose The purpose of this paper is to compare different models’ performance in modelling and forecasting the Finnish house price returns volatility. Design/methodology/approach competing models are autoregressive moving average (ARMA) model fractional integrated (ARFIMA) for returns. For volatility, exponential generalized conditional heteroscedasticity (EGARCH) with GARCH (FIGARCH) component...

Journal: :Mathematics 2021

The peaks-over-threshold (POT) method has a long tradition in modelling extremes environmental variables. However, it originally been introduced under the assumption of independently and identically distributed (iid) data. Since data often exhibits time series structure, this is likely to be violated due short- long-term dependencies practical settings, leading clustering high-threshold exceeda...

2006
Ben Nasr Adnen BEN NASR

This paper considers the application of long memory processes to describe inflation with seasonal behaviour. We use three different long memory models taking into account the seasonal pattern in the data. Namely, the ARFIMA model with deterministic seasonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These models are used to describe the inflation rates of four different cou...

Journal: : 2022

Son yıllarda rüzgâr enerjisinin yenilenebilir bir enerji kaynağı olarak yaygınlaşması ile birlikte hızının üretimindeki ekonomik etkilerinin değerlendirilmesi de önem kazanmış ve planlamalarında doğru hızı tahmini modellemesine olan ilgi artmıştır. Çalışmada klasik yaklaşımlardan farklı hızlarındaki uzun hafıza özelliği incelenmiştir. Bu amaçla, Türkiye’ Bartın ili Amasra bölgesi hızları için e...

2008
Wen-Jen Tsay Wolfgang Karl Härdle W. K. Härdle

We propose a general class of Markov-switching-ARFIMA processes in order to combine strands of long memory and Markov-switching literature. Although the coverage of this class of models is broad, we show that these models can be easily estimated with the DLV algorithm proposed. This algorithm combines the Durbin-Levinson and Viterbi procedures. A Monte Carlo experiment reveals that the finite s...

1998
Mark J. Jensen

By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scale space. The wavelet's ability to localize a time series in time-scale space directly leads to the computational e ciency of the wavelet representation of a N N matrix operator by allowing the N largest elements of the wavelet represented operator to represent the matrix operator [Devore, et al....

Journal: :Computational Statistics & Data Analysis 2003
Jurgen A. Doornik Marius Ooms

We discuss computational aspects of likelihood-based estimation of univariate ARFIMA(p, d, q) models. We show how efficient computation and simulation is feasible, even for large samples. We also discuss the implementation of analytical bias corrections.

2006
LAURA MAYORAL

A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator is easy to compute and is consistent and asymptotically normally distributed for fractionally integrated (FI) processes with an integratio...

2010
Achilleas Zapranis Antonis Alexandridis

In this paper, we use wavelet analysis to localize in Paris, France, a mean-reverting Ornstein-Uhlenbeck process with seasonality in the level and volatility. Wavelet analysis is an extension of the Fourier transform, which is very well suited to the analysis of non-stationary signals. We use wavelet analysis to identify the seasonality component in the temperature process as well as in the vol...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید