نتایج جستجو برای: مجموعه های محدب لاتیس آزاد ماکسیمال
تعداد نتایج: 491822 فیلتر نتایج به سال:
یکانی نامیده می شود، هرگاه u ? a باشد. عضو وارون پذیر ( ?1?= 1) یک جبر باناخ یکدار و نرم یکه a فرض کنیم چگال باشد.a یکانی نامیده می شود، هرگاه پوش محدب عناصر یکانی در گوی واحد بسته a و جبر باناخ ?u? = ?u-1? = 1 می باشد، به مطالعه جبرهای باناخ یکانی و هم چنین برخی مفاهیم وابسته به آن از جمله [4] در این پایان نامه که مرجع اصلی آن جبرهای باناخ ماکسیمال یا به طور یکتا ماکسیمال می پردازیم.نشان دا...
در این پایان نامه، دوگانگی مزدوج توابع محدب مجموعه مقدار مورد مطالعه قرار می گیرد. این پایان نامه به صورت زیر تنظیم شده است: فصل اول، به مرور برخی تعاریف و نتایج پایه ای توپولوژی، آنالیز تابعی و آنالیز محدب اختصاص یافت که در فصل های بعدی مورد استفاده می باشند. هدف اصلی فصل دوم، معرفی فضاهای برداری توپولوژیک محدب و فضاهای خطی مخروطی و خواص مهم آن ها می باشد. در فصل سوم، برخی از نتایج...
دوگان مشخصه های ناحیه شدنی محدب بر اساس محدودیت های (قیدها) شبه محدب، در یک مجموعه به طور شرطی محدب، و در یک مجموعه محدب معکوس، به شرط اینکه قیدهای شبه محدب نامتناهی باشند تعریف می شوند. مفاهیم شبه مزدوج برای تابع های شبه محدب، لاندا شبه مزدوج و لاندا نیم مزدوج که نقش بسیار مهمی در مشخصه های ناحیه شدنی ایفا می کنند، در این پایان نامه بررسی شده اند.
چکیده ندارد.
در این مطالعه مفهوم بهترین تقریب در فضاهای متریک و هیلبرت و مسئله پیدا کردن زوج بهترین تقریب برای دو مجموعه محدب و بسته در یک فضای هیلبرت بررسی شده است. این موضوع حوزه وسیعی از مسائل ریاضیات کاربردی و شاخه های مهندسی را در بر می گیرد. برای حل مسئله سه الگوریتم تکرار معرفی و رفتار این الگوریتم ها بررسی شده است. سپس با تعمیم مفهوم زوج بهترین تقریب برای تعداد متناهی مجموعه محدب و بسته الگوریتم ها...
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
فرض کنیم e فضای باناخ روی میدان اعداد حقیقی باشد و فرض کنیم c زیر مجموعه ای ناتهی ، بسته ، محدب و کراندار از e باشد. بروک اثبات می کند که اگر نگاشت t : c ?c در هر زیر مجموعه محدب و بسته که تحت t ناوردا است دارای نقطه ثابت است و اگر c محدب و ضعیف فشرده باشد آنگاه ،مجموعه نقاط ثابت یک درون بر ناگسترده از c است . در این پایان نامه بنابر روش های مرکز مجانبی نشان می دهیم که مجموعه نقاط ثابت هر نگ...
رفتار مقادیر کرانگین یک مجموعه داده، بهویژه در پدیدههای طبیعی مثل دبی رودخانه، سرعت باد، میزان بارندگی و در بسیاری از علوم کاربردی دیگر مانند مطالعات قابلیت اعتماد و تحلیل پیشامدهای کرانگین محیطی کاربرد دارد. اگر بتوان رفتار این گونه دادهها را مدلبندی کرد چگونگی رفتار آنها در آینده قابل پیشبینی خواهد بود. معمولا تحلیل مقادیر کرانگین براساس توزیع تعمیمیافته مقدار کرانگین ماکسیمال انجام می...
هدف ما در این پایان نامه توصیف کاملی از خاصیت arدر زیر مجموعه های محدب از فضاهای خطی متریک بر حسب گزینش های نزدیک معینی می باشد. به عبارت دقیق تر : در نتیجه اصلی پایان نامه ثابت می کنیم که زیر مجموعه های محدب در فضاهای خطی متریک هستند arاگر وتنها اگر زیر مجموعه های محدب در فضاهای خطی متریکدارای خاصیت گزینش نزدیک متناهی البعدباشند.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید