نتایج جستجو برای: متریک فضای d
تعداد نتایج: 603990 فیلتر نتایج به سال:
در این پایان نامه فرض می کنیم x یک مجموعه ناتهی و e یک فضای باناخ حقیقی مرتب و p یک زیر مجموعه بسته و ناتهی از e در اینجا با جایگزین کردن فضای باناخ حقیقی مرتب با اعداد حقیقی متریک مخروطی را معرفی می کنیم. در این پایان نامه نشان می دهیم که هر فضای متریک مخروطی یک فضای توپولوژیک شمارای اول است. در اینجا خلاصه ای از نگاشت های یکنوای آممیخته را مطرح میکنیم و انطباق زوج ها و قضیه های نقطه ثابت مشتر...
در این پایان نامه فضای 2-متریک را مورد بررسی قرار می دهیم و وجود نقاط ثابت یا خط ثابت را با استفاده از اصل انقباض باناخ روی این فضاها مورد بررسی قرار می دهیم.
اخیراً دو ریاضیدان چینی به اسم هانگ و ژانگ باجایگزین کردن فضای باناخ حقیقی به جای اعداد حقیقی، مفهوم متر مخروطی را معرفی کردند و قضایای نقطه ثابت را برای فضای متریک مخروطی، با استفاده ازایده های قضایای نقطه ثابت در فضای متریک کامل تعمیم دادند. در این پایان نامه، هدف بررسی یافته های این دو ریاضیدان چینی و ریاضیدانان دیگری است که فضای متریک مخروطی را از نظر خواص توپولوژیکی و خواص مخروطی مورد مطالع...
اگر t خود نگاشتی باشدکه روی اجتماع دو زیرمجموعه ی a , bاز یک فضای متریک تعریف شود، آنگاه بهترین نقطه تقریب برای نگاشت t عبارت است از نقطه ای مانند x که d(x,tx) = dist(a,b). در این ژایان نامه در ابتدا با بیان مفهوم نگاشت انقباض دوری نتایج وجودی بهترین نقطه تقریب برای انقباض های دوری در فضای باناخ به طور یکنواخت محدب بیان می شود و با معرفی خاصیت uc تعمیمی از قضایای موجود برای فضای متریک با خاصیت ...
در این پایان نامه، برخی نتایج نقطه ثابت، بخصوص چند نتیجه غیر کلاسیک را بررسی خواهیم نمود. فرض کنید (x,d) یک فضای متریک و t یک خود نگاشت روی x و x_0 نقطه ثابت t باشد. بدیهی است که به ازای هر عدد طبیعی n ، x_0 نقطه ثابت t^n نیز هست. نکته جالب این است که عکس موضوع برقرار باشد، یعنی اگر به ازای یک عدد طبیعی m، x_0 نقطه ثابت t^m باشد، آن گاه x_0 نقطه ثابت t نیز باشد. در این راستا، مفهوم خ...
این پایان نامه شامل سه فصل است. در فصل اول با تعاریف اولیه آشنا شده در فصل دوم قضایای نقطه ثابت را روی توابع انقباضی تعویض پذیر و همچنین مجموعه های فازی دارای خاصیت n به اثبات میرساتیم. در فصل سوم نیز نقاط ثابتی برای نگاشت های انقباضی روی مجموعه های مرتب جزئی و همچنین توابعی که دارای خاصیت یکنوای مرکب هستند، بدست می آوریم.
با توجه به اصل انقباض باناخ نقطه ثابت مشترک را برای نگاشتهای سه تایی در فضای متریک کامل تعمیم یافته بدست می اوریم.
فرض کنیدaوb دو زیر مجموعه ناتهی فضای متریک (x,d) باشند. می دانیم که معادله تابعی tx=x که در آن t یک ناخود نگاشت داده شده است، لزوماً جواب ندارد. پس در این حالت سعی می کنیم که یک جواب تقریبی x را بیابیم به طوری که(d(x,tx مینیمم باشد. قضایای بهترین نقطه ی نزدینی شرایط کافی را برای وجود یک جواب تقریبی فراهم می نمایند که آن را بهترین نقطه ی نزدینی ناخود نگاشت t می نامند؛ این جواب در شرط dist(a,b)=...
در این پایان نامه ابتدا مفهومی ازf-متریک به عنوان نگاشتی با فاصله تابع مقدار، روی مجموعه x معرفی می شود و نظریه فضاهای $f$-متریک بررسی میشود. نشان می دهیم که هر فضای متریک می تواند به عنوان یک فضای f-متریک تلقی شود و هر فضای f-متریک می تواند به عنوان یک فضای توپولوژیک در نظر گرفته شود. علاوه بر این نشان می دهیم که رسته ی موسوم به گسترش یافته فضاهای -fمتریک، شامل رسته ی فضاهای متریک اس...
در این پایان نامه با فرض اینکه(x, d) یک فضای متریک کامل و مرتب باشد، به معرفی نگاشتهای چند مقداری و ویژگی های آن ها پرداخته ایم. سپس با بیان و اثبات یک قضیه اساسی به بررسی قضایای نقطه ثابت برای نگاشتهای چند مقداری می پردازیم. در ادامه قضیه نقطه ثابت ترکیبی برای نگاشتهای چند مقداری روی فضاهای متریک مرتب را بیان و اثبات می کنیم و با استفاده از این قضایا یک معادله دیفرانسیل هذلولی را بررسی می کنیم...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید