نتایج جستجو برای: فضای توپولوژی ایدآلی
تعداد نتایج: 27043 فیلتر نتایج به سال:
مطالعه ی توپولوژی های گوناگون روی درخت ها در نظریه ی مجموعه ها، ما را به سمتی برده که چنین فضاهای توپولوژیک را دسته بندی و گسترش دهیم. یکی از این توپولوژی های گسترش یافته موضوع اصلی این پایان نامه است و آنرا «توپولوژی درختی» می نامیم. توپولوژی درختی با استفاده از تعریف فیلترهای فرشه روی مجموعه ی تالی های بلافاصل نقاط درخت، ساخته می شود. چند مثال و قضیه ارائه می شود و افزون براین نمونه های...
چکیده در این پایان نامه تلاش بر توسعه مفهوم مقدار معمولی برای نگاشت هموار f : o ? p بین فضاهای مداری o و p است. نشان می دهیم که قضیه سارد صادق است و تصویر معکوس یک مقدار معمولی یک زیر فضای مداری هموار کامل از o است. همچنین وجود نگاشت فضای مداری هموار با توجه به گروه های ایزوتروپی موضعی را مطالعه می کنیم. به عنوان یک کاربرد، قضیه غیر انقباضی برسوک برای فضاهای مداری فشرده لبه دار، اثبات خواه...
از قضیه ی ون کمپن نتیجه می شود که فضای توپولوژیک x همبند ساده است هرگاه برابر با اجتماع دو زیرفضای باز همبند ساده خود با اشتراک همبند مسیری باشد. در این پایان نامه تعمیم های گوناگونی از قضیه ی ون کمپن برای فضاهای همبند ساده ی مسطح را می آوریم. از جمله نشان می دهیم اجتماع هر دو زیرفضای پیوستار همبند ساده، همبند ساده است، هرگاه اشتراک آن ها همبند مسیری و حجره ای باشد. همچنین نشان می دهیم برخی ش...
در این پایان نامه به بررسی ساختار توپولوژیک فضاهای اندازه می پردازیم. فرض کنیم x یک فضای خطی و ? توپولوژی موضعاً محدب تولید شده به وسیله نیم نرم های روی x باشد. در این پایان نامه به بررسی x_? یعنی توپولوژی محض روی x می پردازیم و در ادامه با این روش دوگان x_? را مورد بررسی قرار می دهیم. همچنین کاربردهای ازاین روش، فضای اندازه m (x) تجهیز به توپولوژی محض یعنی ?m (a)?_? مورد مطالعه قرار می گیرد و ن...
در این پایان نامه، به بحث پیرامون فضای متری فازی غیرارشمیدسی و انواع آن پرداخته ایم. ابتدا فضای متری فازی غیرارشمیدسی را تعریف و خواص آن را بیان کرده ایم. سپس مفهوم فضای متری فازی غیرارشمیدسی ضعیف را بیان کرده و قضایای نقطه ثابت مشترک را در این فضا بررسی کرده ایم. همین طور به بیان توپولوژی ایجاد شده توسط فضای متری فازی غیرارشمیدسی ضعیف پرداخته ایم و قضیه نقطه ثابت برای نگاشت هایφ انقباضی را...
: در این پایان نامه ابتدا تعریف حاصل ضرب توپولوژی های تعمیم یافته را ارائه می کنیم. پس از آن به بیان برخی خواص این حاصل ضرب پرداخته و رابطه ی بین حاصل ضرب و عمل گرهای توپولوژی تعمیم یافته را بررسی می کنیم. سپس به بررسی مفاهیم هم بندی و فشردگی تعمیم یافته می پردازیم. هم چنین نشان می دهیم که قضیه ی تیخونف برای توپولوژی های تعمیم یافته نیز برقرار است.
فرض کنیم a یک حلقه ی یکدار کاهش یافته (فاقد عنصر پوچ توان غیر بدیهی)باشد. خانواده تمام ایدآلهای اول سره از a را با spec(a)و خانواده تمام ایدآلهای اول مینیمال درa را باmin(a) نمایش می دهیم. مطالعات خوبی در مورد توپولوژی هسته غلافی (hull-kernel topology) یا همان توپولوژی زاریسکی،روی min(a)انجام شده است.به عنوان مثال این توپولوژی دارای پایه ای از زیرمجموعه های بستباز است. در این مقاله بر روی min...
فرض کنیم a یک جبر باناخ جابجایی، یکدار و نیم ساده باشد. در این پایان نامه بعد از بیان مختصری از تئوری گلفند، ابتدا اعضایی مانندa را مشخص می کنیم که توپولوژی نرم کامل a را تعیین می کنند. در ادامه نشان می دهیم که اگر x یک فضای باناخ جدایی پذیر باشد، عملگر خطی کرانداری روی آن وجود دارد که توپولوژی نرم کامل آن را تعیین می کند.و همچنین نشان می دهیم که هر جبر باناخ جابجایی، یکدار و نیم ساده که جدایی ...
در این پایان نامه، به بررسی تعمیمی از مفهوم همبندی تحت عنوان گاما-همبندی برای نگاشتهای یکنوای گاما می پردازیم.سپس مفهوم ناهمبند اکستریمال و نگاشتهای نیم پیوسته بالایی و نیم پیوسته پایینی روی فضاهای توپولوژیک تعمیم یافته را بیان میکنیم و در ادامه، ارتباط ناهمبند اکستریمال و این نگاشتها را بررسی می نماییم.همچنین رابطه های بیشتری بین مفاهیم همبندی های مختلف و ناهمبند اکستریمال را بیان میکنیم و در ...
در این پایان نامه ابتدا به معرفی فضاهای d- متریک و ساختار توپولوژی روی آن پرداخته هم چنین ویژگی های توپولوژی روی این فضاها را بررسی می کنیم. پس از آن با آوردن مثال هایی نشان می دهیم که اساس ادعاهای (دهاگه) مرتبط با ساختار توپولوژی این فضاها نادرست است و لذا بسیاری از نتایج مرتبط با این فضاها رد شده و فضای متریک تعمیم یافته اصلاح شده ای به نام فضای g- متریک معرفی می شود و برخی قضایای نقطه ثابت د...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید