نتایج جستجو برای: فضای ایده آل ماکسیمال
تعداد نتایج: 36359 فیلتر نتایج به سال:
فرض کنید $r$ حلقه ی تعویض پذیر, یکدار و $m$ یک $r$-مدول یکانی است. مدول $m$ را مدول ضربی می نامند, هرگاه برای هر زیرمدول $n$ از مدول $m$ ایده آل $i$ از حلقه ی $r$ وجود داشته باشد به طوری که $mi=n$. در این پایان نامه برای $r$-مدول ضربی $m$ حلقه ی $m^{ast}$ شامل درون ریختی های $m$ بررسی می شود. رابطه بین زیرمدول های اول(ماکسیمال) از مدول $m$ ...
فرض کنید a یک جبر باناخ باشد.دوگان دوم a با ضرب آرنز به یک جبر باناخ تبدیل می شود. در این پایان نامه خواص مقدماتی دوگان دوم a را بررسی می کنیم.بویژه برخی قضایا درباره ی ایدال های ماکسیمال منظم و رادیکال دوگان دوم a را بیان و اثبات می کنیم.چنانچه g گروه موضعا فشرده باشد دوگان دوم جبرگروهی l1(g) را با ضرب آرنز مجهز می کنیم. بسیاری از خواص اساسی آنرا بررسی می کنیم. بویژه نشان داده می شود رادیکال l...
در این پایان نامه به بررسی ایده آل های اولیه یکنواخت و ایده آل های قویاً اولیه نوتر و موری می پردازیم. همچنین برخی از ویژگی های آنها را بیان و رابطه بین این نوع از ایده آل ها را با یکدیگر بررسی می کنیم. در ادامه با ایده آل های متناهیاً اولیه و همچنین حلقه های متناهیاً اولیه آشنا می شویم. سپس بررسی می کنیم که اگر r یک حلقه متناهیاً اولیه باشد، تحت چه شرایطی r[x] و r[[x]] نیز متناهیاً اولیه هستند. همچ...
فرض کنیم r یک حلقه جابجایی و یکدار باشد. خانواده f از ایده آل های r را خانواده oka می نامیم هرگاه برای هر ایده آل i و هرعضو a از r، از اینکه (i,a) و (i:a) متعلق به f باشند نتیجه شود i نیز متعلق به f است. همچنین خانواده f از ایده آل های r را خانواده ako می نامیم هرگاه برای هر ایده آل i واعضای a,b از r، از اینکه (i,a) و (i,b) متعلق به f باشند نتیجه شود (i,ab) نیز متعلق به f است. اصل ایده آل اول ب...
در حلقه نوتری و جابجاییr ، ایده آل i را به طور نرمال آزاد از تاب گوییم هرگاه به ازای هر t?1، ass(r/it) =ass(r/i). در این پایان نامه یک روش بازگشتی برای مطالعه ایده آلهای تک جمله ای آزاد از مربع به طور نرمال آزاد از تاب، ارائه می دهیم و با استفاده از آن نشان می دهیم که اگر i یک ایده آل تک جمله ای آزاد از مربع باشد که به طور مینیمال آزاد از تاب نیست آنگاه کوچکترین توان آن، که دارای ایده آل اول مح...
در این پایان نامه رابطه ایده آل کامل و ایده آل های m- کامل را بررسی می کنیم. ملاحظه می شود که هر ایده آل m- کامل، یک ایده آل کامل است. همچنین شرط کافی برای اینکه ایده آل های کامل، ایده آل m- کامل باشند ارائه می شود. همچنین شرایط معادل بودن ایده آل کامل، m- کامل، بطور صحیح بسته، انقباض یافته و نرمال، برای کلاسی از ایده آلهای پارامتری بیان می شود و شرایطی را که تحت آن هر ایده آل پارامتری اساساً کا...
در این پایان نامه مبانی جبری-هندسی چهار الگوریتم که برای تجزیه اولیه ایدآل ها در حلقه چند جمله ای ها با ضرایب در یک میدان که ابداع شده است را مورد بررسی قرار می دهیم. اولین الگوریتم ، الگوریتم ویت-وو است که اساس آن استفاده از مجموعه های مشخصه است و ورودی آن یک ایده آل رادیکال و خروجی آن ایده آل های اول وابسته آن است.
فرض کنیم a یک جبر باناخ جابجایی، یکدار و نیم ساده باشد. در این پایان نامه بعد از بیان مختصری از تئوری گلفند، ابتدا اعضایی مانندa را مشخص می کنیم که توپولوژی نرم کامل a را تعیین می کنند. در ادامه نشان می دهیم که اگر x یک فضای باناخ جدایی پذیر باشد، عملگر خطی کرانداری روی آن وجود دارد که توپولوژی نرم کامل آن را تعیین می کند.و همچنین نشان می دهیم که هر جبر باناخ جابجایی، یکدار و نیم ساده که جدایی ...
این پایان نامه، به بحث در مورد ایده آل های n-جاذب که تعمیمی از ایده آل های اول می باشد در حلقه های جابه جایی یکدار می پردازد. در ضمن به بحث درباره ایده آل های قویاً n-جاذب و معادل بودن این تعریف با تعریف ایده آل های n-جاذب می پردازد. فرض کنیم r یک حلقه ی جابه جایی یکدار (1? 0 ) و n یک عدد صحیح مثبت باشد. یک ایده آل سره ی i از r یـک ایده آل n-جاذب نامیده مــی شود ه...
فرض کنیم i یک ایده آل حلقه نوتری r باشد. منظور ما از ass(i) مجموعه ایده آل های اول وابسته r/i می باشد. برادمن قبلا نشان داده است که ass(ik)=ass(ik+1) برای k های بقدر کافی بزرگ، کوچکترین عدد k0 که در تساوی فوق صدق کند را اندیس پایداری و ass(ik0 ) را مجموعه پایایی ایده آل های اول وابسته i نامیم و با ass?(i) نشان می دهیم. از قضیه برادمن سوالات زیر بطور طبیعی مطرح می شود; 1-آیا کران بالایی برای ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید