نتایج جستجو برای: عدد احاطه ای علامت دار
تعداد نتایج: 281731 فیلتر نتایج به سال:
مجموعه های احاطه گر موضوعی پرکاربرد و گسترده در نظریه ی گراف است که به صورت های گوناگونی تعمیم یافته است و امروزه در سطح وسیعی در دست مطالعه و بررسی است. یکی از انواع این تعمیم ها توابع احاطه گر رنگین کمانی است. تابع $f:v(g) ightarrow p({1, 2})$ را یک تابع احاطه گر 2-رنگین کمانی روی $g$ گویند هرگاه به ازای هر راس $vin v(g)$ با ویژگی $f(v)=emptyset$ تساوی $igcup_{uin n(...
بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص
در این مقاله برای محاسبه ی نقاط بهینه سفارش دهی در سیستم های کنترل موجودی و بهطور خاص برای سیستم های سفارش دهی مرور دائم (r,q) روشی با استفاده از منطق فازی ارایه شده است که به طور مشابه برای دیگر روش های سفارشدهی نیز می تواند استفاده شود. از آنجا که در مدل های سفارشدهی نمی توانیم به طور دقیق پارامترهایی مثل هزینه را پیش بینی نماییم، با ابهام رو به رو خواهیم بود. در چنین حالتی استفاده از مقاد...
عدد احاطه گری جمعی در سال 1980 توسط کوکاینی معرفی شد و هم اکنون افراد زیادی روی این مفهوم کار می کنند . از جمله ریاضی دانان معروفی که می توان در این زمینه نام برد فاوارن و هنینگ می باشند . عدد احاطه گری جمعی کاربرد بسیار مهمی در علوم کامپپوتر و صنعت دارد . در این پایان نامه در فصل اول به بیان مفهوم عدد احاطه گری جمعی و تعاریف و قضایای مقدماتی پرداخته و در فصل دوم عدد احاطه گری جمعی را در ضرب گر...
فرض کنید r حلقه ی جابه جایی یک دار باشد. در این پایان نامه ابتدا به ازای یک حلقه ی تقلیل یافته r خواص گرافی r® و ارتباط آنها با خواص توپولوژیکی spec® مورد مطالعه قرار می گیرد. متناظر با خواص جبری r یا خواص گرافی r® خواص توپولوژیکی متناظر مشخص می شود. به عنوان مثال نشان داده می شود که عدد خوشه ای گراف r®، عدد سلولی spec® و بعد گلدی حلقه r برابرند. همچنین ثابت می شود وقتی r شرط پوچ ساز را دارد و ...
از آغاز ظهور مفهوم احاطه گر در سال های 1950 و مطالعات گسترده ای که حدود بیست سال پس از آن در این حوزه انجام گرفت، اندیشه ی به کار گیری این مفهوم در شبکه های ارتباطی فکری بدیع جلوه می نمود که به تدریج علاقه ی پژوهشگران ریاضی را به خود جلب کرده و زمینه های پیشرفت فنون مدل بندی شبکه ها را فراهم آورد. هر شبکه ی ارتباطی به صورت گرافی طراحی می شود که در آن، هر راس نمایانگر یک گره یا پردازشگر و هر یا...
گراف سادهg=( v(g),e(g)) را در نظر می گیریم . یک رنگ آمیزی معتبراز g افرازii={v_1,v_2,…,v_k} از راس های g به زیر مجموعه های مستقل یا کلاس های رنگی v_i است. راس v i v_i را رنگارنگ گوئیم اگر حداقل یک همسایه در هر کلاس رنگیvj ،j?i داشته باشد. یک رنگ آمیزی برگ ریزان از g رنگ آمیزی است که در آن هر راس رنگارنگ است. اگر گراف g رنگ آمیزی برگ ریزان داشته باشد، کوچکترین (بزرگترین)عدد طبیعی k که برای آن گر...
دادن قرار با که است ماتریس-(0و 1و-1)یک ، m مانند حقیقی ماتریس یک علامتی الگوی ماتریس های تمام از مجموعه ای q(m) کنید فرض .می آید دست به درایه آن جای به درایه هر علامت معکوس های اگر ،m ? ?q(m)هر برای .است یکسان mبا آن ها علامتی الگوی که باشد حقیقی درازین معکوس ، m که می شود گفته ، باشند داشته یکسانی علامتی الگوی ( m) ? و m درازین علامت دار، دارد. در این پایان نامه ، توصیف کاملی برای یک کلاس ...
خواص مجموعه های احاطه کنندگی کلی k-تایی مینیمال را بررسی می کنیم و خواهیم دید که مسئله ی تشخیص مجموعه های احاطه کننده ی کلی k-تایی در گراف ها را می توانیم به مسئله ی تشخیص k-تقاطع در ابر گرافها تبدیل میکنیم و این عدد را برای گرافهای چند بخشی (کامل)و مکعبهای دوبخشی می یابیم. در ادامه، یک کران بالا برای عدد احاطه کنندگی کلی k-تایی در حالت کلی ارائه می دهیم. عدد احاطه کنندگی k-تایی را در گرافهای ق...
چندجمله ای احاطه گر گراف g از مرتبه n به صورت d(g,x)=?_(i=?(g))^n??d(g,i)? تعریف می شود که d(g,i) تعداد مجموعه های احاطه گر گراف g از اندازه i بوده و ?(g) عدد احاطه ای g است. ریشه d(g,x) را ریشه احاطه ای نامیده و با z(d(g,x)) نشان می دهند. در این پایان نامه خواص اساسی چند جمله ای بعضی گراف ها را مطالعه و چند جمله ای احاطه گر دورها و مسیرها را تعیین می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید