نتایج جستجو برای: طبقهبندیکننده شبکه عصبی مصنوعی

تعداد نتایج: 48552  

الهام رفیعی ساردوئی علی آذره, فرشاد سلیمانی ساردو,

    مدیریت موثر منابع آبی در یک رودخانه نیازمند شناخت صحیح و کامل از فرآیندهایی است که در آن رخ می‌دهد. روش­های هوش مصنوعی می­توانند کارایی بالایی جهت شبیه­سازی جریان رودخانه در مقیاس­های مختلف زمانی و مکانی داشته باشند. در این مطالعه از روش شبکه عصبی مصنوعی و مدل نمودار درختی M5 جهت شبیه‌سازی ماهانه جریان رودخانه در ایستگاه استور استفاده گردید. جهت شبیه‌سازی داده­های دبی جریان ماهانه در این ای...

ژورنال: :تحقیقات دام و طیور 0

این آزمایش به منظور تعیین اثر سطوح مختلف بنتونیت ‏سدیم بر پارامترهای رشد جوجه‎های گوشتی و مقایسه توان پیش‏بینی شبکه عصبی مصنوعی و مدل‏ گمپرتز انجام گردید. به این منظور از 288 قطعه جوجه گوشتی یک روزه سویه راس که در قالب یک طرح کاملاً تصادفی با شش تیمار (6 جیره) و هر تیمار شامل 4 تکرار استفاده شد. تیمارها به ترتیب شامل 0، 75/0، 5/1، 25/2، 3 و 75/3 درصد بنتونیت‏سدیم بودند که به صورت سرک استفاده شدن...

تشخیص آفت سوسک چهار نقطه­ای نخود  توسط پردازش تصویر و شبکه عصبی مصنوعی سامان ساجدیان1* چکیده: نظر به اهمیت تشخیص مکانیزه آفات گیاهان، در این پژوهش تشخیص آفت نخود توسط تکنیک پردازش تصویر با بهره­گیری از شبکه­های عصبی مصنوعی شبیه­سازی شده است. بدین منظور تعدادی تصویر در ابعاد 27×18پیکسل از نخودهای سالم و آسیب دیده بعنوان تصاویر آموزش تهیه شده و پس از استخراج ویژگی آنها توسط موجک گابور، بعنوان داد...

امین امینی عبدالرسول پورانفر مهدی ایمانی

تعیین تخلخل مخزن، به عنوان یکی از مهم ترین پارامترهای پتروفیزیکی، نقش مهمی در صنایع بالادستی نفت ایفـا مـی نمایـد. یکـی ازروش های نوین مورد استفاده در مدلسازی و تخمین تخلخل، طراحی شبکه های عصبی مصنوعی است که برای پـیش بینـی پارامترهـایپتروفیزیکی به کار می رود. شبکه عصبی مصنوعی، روشی محاسبه ایست که برگرفته از علم زیست شناسی بوده و ابزاری قوی برای حلمشکلات فراروی صنعت نفت محسوب می گردد.در این مطا...

اردوان قربانی بهنام بهرامی,

اندازه گیری مستقیم تنوع گونه­ای امری وقت­گیر و ­هزینه­بر بوده و تا حدی به دلیل خطاهای حاصل از نمونه­گیری غیرقابل اعتماد است. این مطالعه با هدف تعیین فاکتور­های کم­هزینه در پیش­بینی تنوع گونه­ای بوسیله شبکه مدل­های عصبی مصنوعی، شبکه عصبی تطبیقی-فازی و رگرسیونی انجام شد. نمونه­برداری با استفاده از روش سیستماتیک-تصادفی از 60 قطعه نمونه در طول 6 ترانسکت 100 متری و از عمق 30-0 سانتی­متری خاک صورت گر...

محمد شعبانی

برآورد دبی اوج سیلاب در حوزه‌­های آبخیز یکی از مهم‌ترین مسائلی است که هیدرولوژیست­‌ها و کارشناسان بخش آب را به‌خود مشغول کرده است. یکی از روش‌های نوین در حل مسائل مهندسی آب و رودخانه‌ها و همچنین، برآورد دبی اوج لحظه­‌ای، استفاده از شبکه­‌های عصبی مصنوعی می‌باشد که با الگوبرداری از شبکه مغز انسان ضمن اجرای فرآیند آموزش، روابط درونی بین داده‌ها را کشف و برای موقعیت‌های دیگر تعمیم می‌دهد. هدف از ا...

ژورنال: :فصلنامه علمی - پژوهشی مهندسی منابع آب 2010
حسین فتحیان محمد نیکو مهدی نیکو

یکی از روش های پیش بینی سیل در رودخانه ها به منظور مدیریت و کنترل سیل در آن، روندیابی سیل می باشد. امروزه تکنیک جدید استفاده از مدل شبکه های عصبی مصنوعی تکاملی(eann) که مبتنی بر هوش مصنوعی می باشد، کاربرد گسترده ای در زمینه های مختلف علمی به ویژه مهندسی آب پیدا کرده است. در این تحقیق به روندیابی سیل در رودخانه کارون، بازه اهواز- فارسیات، با استفاده از مدل های شبکه عصبی مصنوعی تکاملی پیش رونده (...

ژورنال: کومش 2010
بیگلریان, اکبر, حاجی‌زاده, ابراهیم, کاظم‌نژاد, انوشیروان,

سابقه و هدف: یکی از روش‌های آماری تحلیل داده‌های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره‌هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به‌کارگیری مدل شبکه عصبی مصنوعی برای پیش‌بینی داده‌های بقا، افزایش یافته است. این مطالعه به منظور پیش‌بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش‌ها: طی سال‌های 1381 لغایت 1385، تعداد ...

پژوهش حاضر با هدف پیش­بینی پراکندگی کنه‌های خانواده Ascidae با استفاده از  شبکه­ عصبی مصنوعی در شهرستان دامغان استان سمنان انجام شد. بدین منظور مختصات طول و عرض جغرافیایی و ارتفاع از سطح دریا در 137 نقطه به صورت تصادفی، در سطح شهرستان مشخص و به عنوان ورودی­های شبکه عصبی مصنوعی تعریف شد. خروجی نیز تعداد اعضای این خانواده در نقاط مذکور بود. در این پژوهش از شبکه عصبی مصنوعی با ساختار پرسپترون سه ل...

ژورنال: :چشم انداز مدیریت صنعتی 0
علی مروتی شریف آبادی دانشگاه یزد رسول خوانچه مهر دانشگاه یزد

چکیده      تأخیر در تأمین نفت گاز، پیامدهای سیاسی، اجتماعی و اقتصادی وسیعی را به دنبال دارد؛ بنابراین پیش بینی دقیق تقاضای نفت گاز بسیار مهم است. استفاده از شبکه های عصبی مصنوعی در پیش بینی کاربرد زیادی دارد. طراحی مناسب پارامترهای (ساختار) شبکه موجب می شود دقت و عملکرد شبکه های عصبی مصنوعی افزایش یابد. در بیشتر مطالعات از روش سعی و خطا برای تنظیم پارامترهای شبکه های عصبی مصنوعی استفاده می شود ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید