نتایج جستجو برای: شبکه عصبی narx
تعداد نتایج: 43095 فیلتر نتایج به سال:
در این مقاله یک شبکه عصبی راف بهبود یافته به منظور شناسایی سیستم های غیرخطی آشوبی ارائه شده است. شبکه های عصبی راف نوعی از ساختارهای عصبی هستند که براساس نرون های راف طراحی می شوند. یک نرون راف را می توان بصورت زوجی از نرون ها در نظر گرفت، که به نرون های کرانه بالا و کرانه پایین موسوم هستند. رویکرد نرون راف استفاده از محاسبات بازه ای در شبکه عصبی را امکان پذیر می سازد، بنابراین می توا...
در دهه های اخیر به دلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیش بینی رواناب از روی داده های بارش به مسئله ای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشته ها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکه های عصبی مصنوعی است. در این تحقیق سعی گردید کارایی شبکه عصبی م...
Recurrent neural networks have become popular models for system identiication and time series prediction. NARX (Nonlinear AutoRegressive models with eXogenous inputs) neural network models are a popular subclass of recurrent networks and have been used in many applications. Though embedded memory can be found in all recurrent network models, it is particularly prominent in NARX models. We show ...
Chaotic time-series is a dynamic nonlinear system whose features can not be fully reflected by Linear Regression Model or Static Neural Network. While Nonlinear Autoregressive with eXogenous input includes feedback of network output, therefore, it can better reflect the system’s dynamic feature. Take annual active times of sunspot as an example, after verifying the chaos of sunspot time-series ...
A neural network based-approach for structural health monitoring was presented. The proposed approach involves two steps. The first step, system identification, uses NARX (Non-linear Auto-Regressive with eXogenous) neural networks to identify the undamaged and damaged states of a structural system. The second step, structural damage detection, uses the aforementioned trained NARX neural network...
Recurrent neural networks have become popular models for system identification and time series prediction. Nonlinear autoregressive models with exogenous inputs (NARX) neural network models are a popular subclass of recurrent networks and have been used in many applications. Although embedded memory can be found in all recurrent network models, it is particularly prominent in NARX models. We sh...
It has previously been shown that gradient-descent learning algorithms for recurrent neural networks can perform poorly on tasks that involve long-term dependencies, i.e. those problems for which the desired output depends on inputs presented at times far in the past. We show that the long-term dependencies problem is lessened for a class of architectures called nonlinear autoregressive models ...
It has recently been shown that gradient-descent learning algorithms for recurrent neural networks can perform poorly on tasks that involve long-term dependencies, i.e., those problems for which the desired output depends on inputs presented at times far in the past. We show that the long-term dependencies problem is lessened for a class of architectures called Nonlinear AutoRegressive models w...
هدف پژوهش حاضر مقایسه قدرت پیشبینی روشهای شبکه عصبی فازی با شبکه عصبی موجک فازی در پیشبینی قیمت سهام بانکها در بورس اوراق بهادار تهران است. دوره پژوهش این پژوهش از سال 1390 تا 1395 است. در این پژوهش، از سیستم منطق فازی به همراه سیستم شبکه عصبی چندلایه با ساختار بهینهسازی پس انتشار خطا و ماکزیمم همپوشانی تبدیل موجک گسسته برای متغیرهای نرخ ارز، نفت اوپک، طلا، شاخص کل سهام و همچنین حجم معاملا...
یکی از مهمترین موضوعات مطرح بازارهای مالی پیشبینی قیمت و بازده سهام است. در این پژوهش سعی میشود بهترین مدل و رویکرد پیشبینی قیمت سهام با توجه به شاخصهای میانگین مربعات خطا (MSE)، مجذور میانگین مربعات خطاها (RMSE)، ضریب تعیین ( 14R2"> ) انحراف معیار (S.D)، میانگین قدر مطلق خطاها (MAE) و معیار میانگین قدر مطلق خطاها (MAPE) برای مدل پنج عاملی فاما و فرنچ انتخاب شود. بدین منظور پس از تشکیل پرت...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید