نتایج جستجو برای: شبکه عصبی پس انتشار خطا
تعداد نتایج: 196432 فیلتر نتایج به سال:
تبخیر و تعرق یکی از مهمترین عوامل اتلاف آب میباشد. تبخیر و تعرق یک پدیده پیچیدهای است که به عوامل و دادههای زیادی بستگی دارد، بنابراین برآورد دقیق میزان تبخیر و تعرق، بسیار مشکل و پرهزینه میباشد. هدف از این مطالعه برآورد تبخیر و تعرق با استفاده از الگوریتم توازن انرژی سطحی برای زمین (سبال) و همچنین ارزیابی عملکرد شبکههای عصبی مصنوعی در برآورد تبخیر و تعرق میباشد. جهت محاسبه میزان سبال ت...
پژوهش حاضر با هدف پیشبینی تراکم کنه تارتن دولکهای با روشهای زمینآمار و شبکهی عصبی مصنوعی در مرزعه خیار استان خوزستان شهرستان رامهرمز انجام شد. بدین منظور مختصات طول و عرض ۱۰۰ نقطه با فاصله ۱۰متر، در سطح مزرعه مشخص و به عنوان ورودیهای هر دو روش تعریف شد. خروجی هر روش نیز تعداد این آفت در آن نقاط بود. در بخش زمینآمار از روش کریجینگ معمولی و در بخش شبکه عصبی مصنوعی، ساختار پرسپترون سه لایه ...
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
در این تحقیق سیستم تعادلی پایپرزین-آب- دیاکسیدکربن با استفاده از مدلهای شبکه عصبی مدل سازی شده است. در مدل از دو شبکه عصبی MLP, RBF استفاده شده است. در یادگیری شبکهها الگوریتم پس انتشار خطا به کار رفته است. برای آموزش و تست شبکه های عصبی یک مرور کلی بر کارهای تجربی در زمینه حلالیت دی اکسیدکربن در محلول آبی پایپرزین انجام شده و داده های تجربی جمعآوری و طبقه بندی شده است. نتایج شبکه های عصبی ...
در این مقاله با ارایه نمونه عملی فرآیند اسپری درایینگ، متدولوژی مدلسازی فرآیندها با استفاده سلسله مراتبی از تحلیل رگرسیونی و الگوریتم شبکه عصبی مصنوعی، با هدف کنترل پیشبینانه کیفیت، برای نخستینبار تشریح و پیادهسازی شده است. استفاده ازANNs در این مقاله، به منظور معماری مدل عصبی فرآیند اسپری درایینگ با اتخاذ یک رویکرد عمومی و انتخاب الگوریتم پس انتشار خطا به کمک دادههای مستقیم است. فرض تاثیر...
در این پژوهش یک شبکه عصبی پیشرو با الگوریتم پس انتشار خطا، برای پیش بینی سختی نانوکامپوزیت های پایه آلومینیوم با تقویت کننده آلومینا، که به روش آلیاژسازی مکانیکی و پرس گرم تولید شده بودند، با استفاده از داده های موجود طراحی شد. درصد حجمی تقویت کننده، اندازه ذرات تقویت کننده نانومتری، نیروی وارد شده در آزمون سختی ویکرز؛ همچنین عوامل موثر بر فرآیند آلیاژسازی مکانیکی مانند زمان آسیاب کاری، نسبت وز...
هدف اصلی این تحقیق دستیابی به یک سبد سرمایه مناسبتر برای سرمایهگذاران ریسکپذیر است. در این تحقیق مدل مارکوتیز در تئوری سبد سرمایه به عنوان مدل مقایسهای استفاده شده است و مدل شبکه عصبی با آن مقایسه شده است. الگوی یادگیری شبکه عصبی، الگوی «پس انتشار خطا» میباشد. سبد انتخابی شامل بیست سهم از بازار بورس اوراق بهادار تهران است که برای یک دوره سیزده ماهه مورد مطالعه قرار گرفته است. در هر دو مدل ...
چکیده شبکه های عصبی در دهه ی اخیر به عنوان ابزار قدرتمندی جهت پیش بینی در حوزه های مختلف مورد استفاده قرار گرفته اند. در این تحقیق از شبکه عصبی پیشخور پرسپترون چند لایه (MLP) با یادگیری پس انتشار از الگوریتم آموزش انتشار به عقب (BP)، با تکنیک بهینه سازی عددی لونبرگ- مارکوات (LM)،توسط نرم افزار متلب مورد استفاده قرار گرفت. درصد رطوبت کیک ، دمای پرس و زمان بسته شدن پرس به عنوان متغیرهای ورودی و خ...
در این مقاله یک شبکه عصبی راف بهبود یافته به منظور شناسایی سیستم های غیرخطی آشوبی ارائه شده است. شبکه های عصبی راف نوعی از ساختارهای عصبی هستند که براساس نرون های راف طراحی می شوند. یک نرون راف را می توان بصورت زوجی از نرون ها در نظر گرفت، که به نرون های کرانه بالا و کرانه پایین موسوم هستند. رویکرد نرون راف استفاده از محاسبات بازه ای در شبکه عصبی را امکان پذیر می سازد، بنابراین می توا...
در سال های اخیر، شبکه های عصبی مصنوعی کاربرد های بسیار زیادی در علوم مختلف مهندسی، از جمله مهندسی عمران پیدا نموده است. در این مقاله از دو نوع شبکة عصبی مصنوعی با سه ساختار مختلف، برای پیش بینی مقاومت فشاری بتن استفاده شده است. در این مطالعه، نوع جدیدی از شبکه های عصبی مصنوعی، به نام شبکة عصبیِ بازگشتی المان (elman networks recurrent ) معرفی شده و مقاومت نمونه های بتنی با استفاده از این شبکه ها ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید