نتایج جستجو برای: روش k means

تعداد نتایج: 1068359  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم 1388

خوشه بندی فرایندی است که در طی آن مجموعه ای از نمونه ها به خوشه هایی تقسیم می شوند که اعضای هرخوشه بیشترین شباهت را به یکدیگر داشته باشند و خوشه های مختلف با یکدیگر بیشترین تفاوت را داشته باشند. خوشه بندی یکی از تکنیک های داده کاوی و آنالیز داده متعارف می باشد. درخوشه بندی داده ها، در مسائل با اندازه داده بزگتر رسیدن به حل بهینه مشکل تر می باشد و در نتیجه مدت زمان لازم برای رسیدت به حل های قابل...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیخ بهایی - دانشکده مهندسی کامپیوتر 1392

چکیده داده کاوی به فرایند استخراج الگوهای پنهان و یا ویژگی های جالب و مفید از مجموعه داده ها گفته می شود که با استفاده از آن می توان به تصمیم گیری و پیش بینی رفتار آینده پرداخت. خوشه بندی در داده کاوی یکی از عملیات مهم در نتیجه گیری داده-کاوی بر روی داده ها به حساب می آید. خوشه بندی افراز بندی یک گروه متنوع به تعدادی زیر گروه مشابه یا گروه بندی مجموعه-ای از اشیاء به کلاسی از اشیاء مشابه می با...

Journal: :Neurocomputing 2006
Sergio Bermejo

This paper introduces a straightforward generalization of the well-known LVQ1 algorithm for nearest neighbour classifiers that includes the standard LVQ1 and the k-means algorithms as special cases. It is based on a regularizing parameter that monotonically decreases the upper bound of the training classification error towards a minimum. Experiments using 10 real data sets show the utility of t...

2015
Christopher Whelan Greg Harrell

In this study, the general ideas surrounding the k-medians problem are discussed. This involves a look into what k-medians attempts to solve and how it goes about doing so. We take a look at why k-medians is used as opposed to its k-means counterpart, specifically how its robustness enables it to be far more resistant to outliers. We then discuss the areas of study that are prevalent in the rea...

Journal: :CoRR 2015
Qin Zhang

In this paper we give a first set of communication lower bounds for distributed clustering problems, in particular, for k-center, k-median and k-means. When the input is distributed across a large number of machines and the number of clusters k is small, our lower bounds match the current best upper bounds up to a logarithmic factor. We have designed a new composition framework in our proofs fo...

Journal: :IEICE Electronic Express 2009
Taehoon Lee Seung Jean Kim Eui-Young Chung Sungroh Yoon

We propose a new clustering algorithm based upon the maximin correlation analysis (MCA), a learning technique that can minimize the maximum misclassification risk. The proposed algorithm resembles conventional partition clustering algorithms such as k-means in that data objects are partitioned into k disjoint partitions. On the other hand, the proposed approach is unique in that an MCA-based ap...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1380

چون در اکثر رویدادها علم پزشکی بصورت غیرقطبی و مبهم با علائم فیزیولوژیکی بیان می شوند و این نوع مطالعات عموما مبهم و نادقیق هستند. در نتیجه برای بررسی این مفاهیم براساس نظریه های تئوریهای فازی و الگوریتم های آن که مهمترین آنها خوشه بندی فازی است استفاده می شود و از ویژگیهای مهم الگوریتم خوشه بندی فازی آنست که در ساختار الگوریتم فازی در خوشه بندی از تابع عضویت فازی استفاده می شود و یک فرد ممکن ا...

Journal: :Jurnal Teknologi Informasi dan Ilmu Komputer 2015

Journal: :International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2014

2013
Javier Béjar

Mini Batch K-means ([11]) has been proposed as an alternative to the K-means algorithm for clustering massive datasets. The advantage of this algorithm is to reduce the computational cost by not using all the dataset each iteration but a subsample of a fixed size. This strategy reduces the number of distance computations per iteration at the cost of lower cluster quality. The purpose of this pa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید